論文の概要: Continuous Bayesian Model Selection for Multivariate Causal Discovery
- arxiv url: http://arxiv.org/abs/2411.10154v2
- Date: Tue, 24 Jun 2025 16:05:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-25 15:36:07.815049
- Title: Continuous Bayesian Model Selection for Multivariate Causal Discovery
- Title(参考訳): 多変量因果探索のための連続ベイズモデル選択
- Authors: Anish Dhir, Ruby Sedgwick, Avinash Kori, Ben Glocker, Mark van der Wilk,
- Abstract要約: 離散モデル選択問題の連続緩和を利用したスケーラブルなアルゴリズムを提案する。
ベイズ非パラメトリックモデルとしてカウスカルプロセス条件密度推定器(CGP-CDE)を用いる。
この行列は、限界確率と非巡回正規化器を用いて最適化され、最大 A 後方因果グラフを与える。
- 参考スコア(独自算出の注目度): 22.945274948173182
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Current causal discovery approaches require restrictive model assumptions in the absence of interventional data to ensure structure identifiability. These assumptions often do not hold in real-world applications leading to a loss of guarantees and poor performance in practice. Recent work has shown that, in the bivariate case, Bayesian model selection can greatly improve performance by exchanging restrictive modelling for more flexible assumptions, at the cost of a small probability of making an error. Our work shows that this approach is useful in the important multivariate case as well. We propose a scalable algorithm leveraging a continuous relaxation of the discrete model selection problem. Specifically, we employ the Causal Gaussian Process Conditional Density Estimator (CGP-CDE) as a Bayesian non-parametric model, using its hyperparameters to construct an adjacency matrix. This matrix is then optimised using the marginal likelihood and an acyclicity regulariser, giving the maximum a posteriori causal graph. We demonstrate the competitiveness of our approach, showing it is advantageous to perform multivariate causal discovery without infeasible assumptions using Bayesian model selection.
- Abstract(参考訳): 現在の因果発見アプローチは、構造識別可能性を確保するために介入データがない場合に限定的なモデル仮定を必要とする。
これらの仮定は、現実のアプリケーションでは適用されないことが多いため、保証の喪失やパフォーマンスの低下につながる。
近年の研究では、バイエルンのモデル選択は、より柔軟な仮定のために制限的モデリングを交換することで、誤りを犯す小さな確率で性能を大幅に向上させることができることが示されている。
我々の研究は、このアプローチが重要な多変量体においても有用であることを示している。
離散モデル選択問題の連続緩和を利用したスケーラブルなアルゴリズムを提案する。
具体的には,因果過程条件密度推定器(CGP-CDE)をベイズ非パラメトリックモデルとし,そのハイパーパラメータを用いて隣接行列を構成する。
この行列は、限界確率と非巡回正規化器を用いて最適化され、最大 A 後方因果グラフを与える。
本研究では,ベイズモデル選択を用いた仮定を使わずに多変量因果探索を行うことが有利であることを示す。
関連論文リスト
- Identifiable Multi-View Causal Discovery Without Non-Gaussianity [63.217175519436125]
多視点構造方程式モデル(SEM)の枠組みにおける線形因果発見への新しいアプローチを提案する。
我々は、SEMの構造が非巡回的であること以外は、余計な仮定をすることなく、モデルの全てのパラメータの識別可能性を証明する。
提案手法は,脳領域間の因果グラフの推定を可能にする実データへのシミュレーションおよび応用を通じて検証される。
論文 参考訳(メタデータ) (2025-02-27T14:06:14Z) - Robust Gaussian Processes via Relevance Pursuit [17.39376866275623]
本稿では,データポイント固有ノイズレベルを推定することにより,スパースアウトレーヤに対するロバスト性を実現するGPモデルを提案する。
我々は,データポイント固有ノイズ分散において,関連する対数限界確率が強く抑制されるようなパラメータ化が可能であることを,驚くべきことに示している。
論文 参考訳(メタデータ) (2024-10-31T17:59:56Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Stable Training of Probabilistic Models Using the Leave-One-Out Maximum Log-Likelihood Objective [0.7373617024876725]
カーネル密度推定(KDE)に基づくモデルは、このタスクの一般的な選択であるが、密度の異なるデータ領域に適応できない。
適応的なKDEモデルを用いてこれを回避し、モデル内の各カーネルは個別の帯域幅を持つ。
最適化速度を確実に高速化するために改良された期待最大化アルゴリズムを用いる。
論文 参考訳(メタデータ) (2023-10-05T14:08:42Z) - Bivariate Causal Discovery using Bayesian Model Selection [11.726586969589]
ベイズ的枠組みに因果仮定を組み込む方法について述べる。
これにより、現実的な仮定でモデルを構築することができます。
その後、幅広いベンチマークデータセットにおいて、従来の手法よりも優れています。
論文 参考訳(メタデータ) (2023-06-05T14:51:05Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
本稿では,ガンマハイパープライヤを用いた階層的逆問題に対する変分反復交替方式を提案する。
提案した変分推論手法は正確な再構成を行い、意味のある不確実な定量化を提供し、実装が容易である。
論文 参考訳(メタデータ) (2021-11-26T06:33:29Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Gaussian Process Latent Class Choice Models [7.992550355579791]
離散選択モデル(DCM)における確率的機械学習の非パラメトリッククラスを提案する。
提案モデルでは,GPを用いた行動同質クラスタ(ラテントクラス)に確率的に個人を割り当てる。
モデルは2つの異なるモード選択アプリケーションでテストされ、異なるLCCMベンチマークと比較される。
論文 参考訳(メタデータ) (2021-01-28T19:56:42Z) - On Statistical Efficiency in Learning [37.08000833961712]
モデルフィッティングとモデル複雑性のバランスをとるためのモデル選択の課題に対処する。
モデルの複雑さを順次拡大し、選択安定性を高め、コストを削減するオンラインアルゴリズムを提案します。
実験の結果, 提案手法は予測能力が高く, 計算コストが比較的低いことがわかった。
論文 参考訳(メタデータ) (2020-12-24T16:08:29Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
変分分布とは異なる後部近似を用いて意思決定を行うことが示唆された。
これらの理論的な結果から,最適モデルに関するいくつかの近似的提案を学習することを提案する。
おもちゃの例に加えて,単細胞RNAシークエンシングのケーススタディも紹介する。
論文 参考訳(メタデータ) (2020-02-17T19:23:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。