論文の概要: Classical optimization with imaginary time block encoding on quantum computers: The MaxCut problem
- arxiv url: http://arxiv.org/abs/2411.10737v1
- Date: Sat, 16 Nov 2024 08:17:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:32:15.424700
- Title: Classical optimization with imaginary time block encoding on quantum computers: The MaxCut problem
- Title(参考訳): 量子コンピュータ上の時間ブロック符号化による古典的最適化:MaxCut問題
- Authors: Dawei Zhong, Akhil Francis, Ermal Rrapaj,
- Abstract要約: 対角ハミルトニアンの基底状態解を見つけることは、金融、物理学、計算機科学など多くの分野に関心を持つ理論的および実践的な問題の両方に関係している。
ここでは、新しいブロック符号化方式を用いて、これらの問題の基底状態を取得し、この手法をMaxCutに例証として応用する。
- 参考スコア(独自算出の注目度): 2.4968861883180447
- License:
- Abstract: Finding ground state solutions of diagonal Hamiltonians is relevant for both theoretical as well as practical problems of interest in many domains such as finance, physics and computer science. These problems are typically very hard to tackle by classical computing and quantum computing could help in speeding up computations and efficiently tackling larger problems. Here we use imaginary time evolution through a new block encoding scheme to obtain the ground state of such problems and apply our method to MaxCut as an illustration. Our method, which for simplicity we call ITE-BE, requires no variational parameter optimization as all the parameters in the procedure are expressed as analytical functions of the couplings of the Hamiltonian. We demonstrate that our method can be successfully combined with other quantum algorithms such as quantum approximate optimization algorithm (QAOA). We find that the QAOA ansatz increases the post-selection success of ITE-BE, and shallow QAOA circuits, when boosted with ITE-BE, achieve better performance than deeper QAOA circuits. For the special case of the transverse initial state, we adapt our block encoding scheme to allow for a deterministic application of the first layer of the circuit.
- Abstract(参考訳): 対角ハミルトニアンの基底状態解を見つけることは、金融、物理学、計算機科学など多くの分野に関心を持つ理論的および実践的な問題の両方に関係している。
これらの問題は通常、古典的な計算や量子コンピューティングによって対処するのが困難であり、計算を高速化し、より大きな問題に効率的に対処するのに役立ちます。
ここでは、新しいブロック符号化方式を用いて、これらの問題の基底状態を取得し、この手法をMaxCutに例証として応用する。
本手法では,ITE-BE を簡易に呼び出すため,ハミルトニアン結合のすべてのパラメータを解析関数として表現するため,変分パラメータの最適化は不要である。
提案手法は量子近似最適化アルゴリズム(QAOA)などの他の量子アルゴリズムとうまく組み合わせることができることを示す。
その結果,QAOAアンサッツはITT-BEの選択後成功率を高め,QAOAの浅い回路はTE-BEでアップすると,より深いQAOA回路よりも優れた性能が得られることがわかった。
逆初期状態の特別な場合、回路の第1層の決定論的適用を可能にするブロック符号化方式を適用する。
関連論文リスト
- Variational Quantum Algorithms for Combinatorial Optimization [0.571097144710995]
変分アルゴリズム (VQA) は, NISQシステムの実用化に向けた最有力候補の1つである。
本稿では,VQAの現状と最近の発展を考察し,近似最適化への適用性を強調した。
10ノードと20ノードのグラフ上でMaxCut問題を解くために,深さの異なるQAOA回路を実装した。
論文 参考訳(メタデータ) (2024-07-08T22:02:39Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Quantum approximate optimization algorithm for qudit systems [0.0]
量子近似最適化アルゴリズム(QAOA)について考察する。
本稿では、QAOAを用いて様々な整数最適化問題を定式化する方法を説明する。
最大$kのカラー化問題にマッピングした充電最適化問題の数値計算結果を示す。
論文 参考訳(メタデータ) (2022-04-01T10:37:57Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
浅いQAOA回路の量子ビット数と線形にスケールするグラフ分解に基づく古典的アルゴリズムを提案する。
我々の結果は、QAOAによる量子アドバンテージの探索だけでなく、NISQプロセッサのベンチマークにも有用である。
論文 参考訳(メタデータ) (2021-12-21T12:41:31Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
変分量子アルゴリズム(VQA)は、特定の計算上の利点を得るために、短期量子マシンを利用する可能性がある。
現代のVQAは、巨大なデータを扱うために単独の量子プロセッサを使用するという伝統によって妨げられている、計算上のオーバーヘッドに悩まされている。
ここでは、この問題に対処するため、効率的な分散最適化手法であるQUDIOを考案する。
論文 参考訳(メタデータ) (2021-06-24T08:18:42Z) - Quantum constraint learning for quantum approximate optimization
algorithm [0.0]
本稿では,探索部分空間を厳しく制約するミキサーハミルトンを学習するための量子機械学習手法を提案する。
学習したユニタリを直接適応可能なアンサッツを使用してQAOAフレームワークにプラグインすることができる。
また,Wasserstein距離を用いた近似最適化アルゴリズムの性能を,制約なしで評価する直感的計量法を開発した。
論文 参考訳(メタデータ) (2021-05-14T11:31:14Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - An adaptive quantum approximate optimization algorithm for solving
combinatorial problems on a quantum computer [0.0]
量子近似最適化アルゴリズム(QAOA)は、最適化問題を解くハイブリッド変分量子古典アルゴリズムである。
我々は,QAOAの反復バージョンを開発し,特定のハードウェア制約に適応することができる。
アルゴリズムをMax-Cutグラフのクラス上でシミュレートし、標準QAOAよりもはるかに高速に収束することを示す。
論文 参考訳(メタデータ) (2020-05-20T18:00:01Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。