HistoEncoder: a digital pathology foundation model for prostate cancer
- URL: http://arxiv.org/abs/2411.11458v2
- Date: Fri, 22 Nov 2024 13:32:01 GMT
- Title: HistoEncoder: a digital pathology foundation model for prostate cancer
- Authors: Joona Pohjonen, Abderrahim-Oussama Batouche, Antti Rannikko, Kevin Sandeman, Andrew Erickson, Esa Pitkanen, Tuomas Mirtti,
- Abstract summary: Foundation models are trained on massive amounts of data to distinguish complex patterns.
We develop a foundation model for prostate cancer digital pathology called HistoEncoder by pre-training on 48 million prostate tissue tile images.
- Score: 0.40151799356083057
- License:
- Abstract: Foundation models are trained on massive amounts of data to distinguish complex patterns and can be adapted to a wide range of downstream tasks with minimal computational resources. Here, we develop a foundation model for prostate cancer digital pathology called HistoEncoder by pre-training on 48 million prostate tissue tile images. We demonstrate that HistoEncoder features extracted from tile images with similar histological patterns map closely together in the feature space. HistoEncoder outperforms models pre-trained with natural images, even without fine-tuning or with 1000 times less training data. We describe two use cases that leverage the capabilities of HistoEncoder by fine-tuning the model with a limited amount of data and computational resources. First, we show how HistoEncoder can be used to automatically annotate large-scale datasets with high accuracy. Second, we combine histomics with commonly used clinical nomograms, significantly improving prostate cancer-specific death survival models. Foundation models such as HistoEncoder can allow organizations with limited resources to build effective clinical software tools without needing extensive datasets or significant amounts of computing.
Related papers
- Tissue Concepts: supervised foundation models in computational pathology [2.246872800470769]
Training foundation models themselves is usually very expensive in terms of data, computation, and time.
This paper proposes a supervised training method that drastically reduces these expenses.
The proposed method is based on multi-task learning to train a joint encoder, by combining 16 different classification, segmentation, and detection tasks on a total of 912,000 patches.
arXiv Detail & Related papers (2024-09-05T13:32:40Z) - CanvOI, an Oncology Intelligence Foundation Model: Scaling FLOPS Differently [0.0]
We present CanvOI, a ViT-g/10-based foundation model designed to enhance the capabilities of digital pathology.
By introducing larger tile sizes (380 x 380 pixels) and smaller patch sizes (10 x 10 pixels), we were able to optimize the model's performance.
arXiv Detail & Related papers (2024-09-04T17:15:44Z) - HistoSPACE: Histology-Inspired Spatial Transcriptome Prediction And Characterization Engine [0.0]
HistoSPACE model explore the diversity of histological images available with ST data to extract molecular insights from tissue image.
Model demonstrates significant efficiency compared to contemporary algorithms, revealing a correlation of 0.56 in leave-one-out cross-validation.
arXiv Detail & Related papers (2024-08-07T07:12:52Z) - Low-resource finetuning of foundation models beats state-of-the-art in
histopathology [3.4577420145036375]
We benchmark the most popular vision foundation models as feature extractors for histopathology data.
By finetuning a foundation model on a single GPU for only two hours or three days depending on the dataset, we can match or outperform state-of-the-art feature extractors.
This is a considerable shift from the current state, where only few institutions with large amounts of resources and datasets are able to train a feature extractor.
arXiv Detail & Related papers (2024-01-09T18:46:59Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
We introduce a novel approach that trains diffusion models conditioned on embeddings from self-supervised learning (SSL)
Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images.
Augmenting real data by generating variations of real images improves downstream accuracy for patch-level and larger, image-scale classification tasks.
arXiv Detail & Related papers (2023-12-12T14:45:45Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
We introduce PathLDM, the first text-conditioned Latent Diffusion Model tailored for generating high-quality histopathology images.
Our approach fuses image and textual data to enhance the generation process.
We achieved a SoTA FID score of 7.64 for text-to-image generation on the TCGA-BRCA dataset, significantly outperforming the closest text-conditioned competitor with FID 30.1.
arXiv Detail & Related papers (2023-09-01T22:08:32Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - RadTex: Learning Efficient Radiograph Representations from Text Reports [7.090896766922791]
We build a data-efficient learning framework that utilizes radiology reports to improve medical image classification performance with limited labeled data.
Our model achieves higher classification performance than ImageNet-supervised pretraining when labeled training data is limited.
arXiv Detail & Related papers (2022-08-05T15:06:26Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.