論文の概要: A Conceptual Framework for Requirements Engineering of Pretrained-Model-Enabled Systems
- arxiv url: http://arxiv.org/abs/2507.13095v1
- Date: Thu, 17 Jul 2025 13:06:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.506729
- Title: A Conceptual Framework for Requirements Engineering of Pretrained-Model-Enabled Systems
- Title(参考訳): 事前学習型システムの要求工学のための概念的枠組み
- Authors: Dongming Jin, Zhi Jin, Linyu Li, Xiaohong Chen,
- Abstract要約: 本稿では,事前訓練されたモデル対応ソフトウェアシステムの要求工学に適した概念的フレームワークを提案する。
このビジョンは、事前訓練されたモデル対応システムの要件エンジニアリングにおいて、研究者や実践者が新たな課題に取り組むためのガイドを提供するのに役立つ。
- 参考スコア(独自算出の注目度): 17.364803079763
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in large pretrained models have led to their widespread integration as core components in modern software systems. The trend is expected to continue in the foreseeable future. Unlike traditional software systems governed by deterministic logic, systems powered by pretrained models exhibit distinctive and emergent characteristics, such as ambiguous capability boundaries, context-dependent behavior, and continuous evolution. These properties fundamentally challenge long-standing assumptions in requirements engineering, including functional decomposability and behavioral predictability. This paper investigates this problem and advocates for a rethinking of existing requirements engineering methodologies. We propose a conceptual framework tailored to requirements engineering of pretrained-model-enabled software systems and outline several promising research directions within this framework. This vision helps provide a guide for researchers and practitioners to tackle the emerging challenges in requirements engineering of pretrained-model-enabled systems.
- Abstract(参考訳): 大規模事前訓練モデルの最近の進歩は、現代のソフトウェアシステムにおいてコアコンポーネントとして広く統合されている。
この傾向は当面続くと予想されている。
決定論的論理によって支配される従来のソフトウェアシステムとは異なり、事前訓練されたモデルによって駆動されるシステムは、あいまいな能力境界、文脈に依存した振る舞い、継続的な進化といった特徴と創発的な特徴を示す。
これらの特性は、機能的分解可能性や行動予測可能性を含む、要求工学における長年の仮定に基本的に挑戦する。
本稿では,この問題を考察し,既存の要求工学手法の再考を提唱する。
本稿では,事前訓練されたモデル対応ソフトウェアシステムの要求工学に適合する概念的フレームワークを提案し,本フレームワーク内での有望な研究方向性を概説する。
このビジョンは、事前訓練されたモデル対応システムの要件エンジニアリングにおいて、研究者や実践者が新たな課題に取り組むためのガイドを提供するのに役立つ。
関連論文リスト
- Neural Network Reprogrammability: A Unified Theme on Model Reprogramming, Prompt Tuning, and Prompt Instruction [55.914891182214475]
モデル適応のための統一フレームワークとして,ニューラルネットワークの再プログラム可能性を導入する。
本稿では,4つの重要な側面にまたがる情報操作アプローチを分類する分類法を提案する。
残る技術的課題や倫理的考察も分析する。
論文 参考訳(メタデータ) (2025-06-05T05:42:27Z) - SENAI: Towards Software Engineering Native Generative Artificial Intelligence [3.915435754274075]
本稿では,ソフトウェア工学の知識を大規模言語モデルに統合することについて議論する。
本研究の目的は,LLMが単なる機能的精度を超えて生成タスクを実行できる新しい方向を提案することである。
ソフトウェアエンジニアリング ネイティブな生成モデルは、現在のモデルに存在する欠点を克服するだけでなく、現実世界のソフトウェアエンジニアリングを扱うことができる次世代の生成モデルへの道を開くでしょう。
論文 参考訳(メタデータ) (2025-03-19T15:02:07Z) - Search, Verify and Feedback: Towards Next Generation Post-training Paradigm of Foundation Models via Verifier Engineering [51.31836988300326]
検証工学は、基礎モデルの時代のために特別に設計された新しいポストトレーニングパラダイムである。
検証工学のプロセスは,検索,検証,フィードバックの3段階に分類する。
論文 参考訳(メタデータ) (2024-11-18T12:04:52Z) - Abstraction Engineering [6.091612632147657]
抽象化はすでに、ソフトウェア開発に関わる多くの分野で使われています。
本稿では、これらの新しい課題を考察し、抽象のレンズを通してそれらに取り組むことを提案する。
抽象化エンジニアリングの基礎について議論し、主要な課題を特定し、これらの課題に対処するための研究課題を強調し、将来の研究のロードマップを作成します。
論文 参考訳(メタデータ) (2024-08-26T07:56:32Z) - Towards a General Framework for Continual Learning with Pre-training [55.88910947643436]
本稿では,事前学習を用いた逐次到着タスクの連続学習のための一般的な枠組みを提案する。
我々はその目的を,タスク内予測,タスク同一性推論,タスク適応予測という3つの階層的構成要素に分解する。
本稿では,パラメータ効率細調整(PEFT)技術と表現統計量を用いて,これらのコンポーネントを明示的に最適化する革新的な手法を提案する。
論文 参考訳(メタデータ) (2023-10-21T02:03:38Z) - Circular Systems Engineering [0.40964539027092917]
本稿では,システムサステナビリティの新たなパラダイムである循環システム工学の概念を紹介する。
エンド・ツー・エンド・サステナビリティとバイパーティイト・サステナビリティの2つの原則を定義します。
循環原理の実装と導入につながる典型的な組織進化パターンを概説する。
論文 参考訳(メタデータ) (2023-06-30T17:09:44Z) - Methodology for Holistic Reference Modeling in Systems Engineering [0.0]
本稿では,様々な視点やレベルにまたがる参照モデルを記述するための全体論的アプローチを提案する。
メリットには、参照設計の開始時点ですでに考慮されているパフォーマンスパラメータによる、機能カバレッジのエンドツーエンドトレーサビリティが含まれる。
論文 参考訳(メタデータ) (2022-11-21T13:41:07Z) - Model-based Analysis and Specification of Functional Requirements and
Tests for Complex Automotive Systems [0.19837121116620585]
本稿では,利害関係者の観点からの検証対象の早期識別から始まる手法を提案する。
完全かつ一貫した要件とテスト仕様を保証するために,モデルベースシステム工学(MBSE)手法を開発した。
本研究は,我々の方法論が適用可能であること,既存の要件とテスト仕様プロセスを改善することを裏付けるものである。
論文 参考訳(メタデータ) (2022-09-03T18:24:32Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Concept for a Technical Infrastructure for Management of Predictive
Models in Industrial Applications [0.0]
モデル管理システムの技術的概念について述べる。
このコンセプトには、データのバージョニングストレージ、さまざまな機械学習アルゴリズムのサポート、モデルの微調整、その後のモデルのデプロイ、デプロイ後のモデルパフォーマンスの監視が含まれる。
論文 参考訳(メタデータ) (2021-07-29T08:38:46Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。