論文の概要: Preempting Text Sanitization Utility in Resource-Constrained Privacy-Preserving LLM Interactions
- arxiv url: http://arxiv.org/abs/2411.11521v2
- Date: Fri, 07 Mar 2025 04:39:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:22:41.228103
- Title: Preempting Text Sanitization Utility in Resource-Constrained Privacy-Preserving LLM Interactions
- Title(参考訳): 資源制約付きプライバシ保存LDMインタラクションにおけるテキスト・サニタイズ・ユーティリティの活用
- Authors: Robin Carpentier, Benjamin Zi Hao Zhao, Hassan Jameel Asghar, Dali Kaafar,
- Abstract要約: 本稿では,大規模言語モデルに送信される前に,与えられた衛生的プロンプトの有用性を予測するアーキテクチャを提案する。
我々のアーキテクチャは、最大12%のプロンプトでそのようなリソースの無駄を防ぐのに役立ちます。
- 参考スコア(独自算出の注目度): 4.372695214012181
- License:
- Abstract: Interactions with online Large Language Models raise privacy issues where providers can gather sensitive information about users and their companies from the prompts. While Differential Privacy can be applied on textual prompts through the Multidimensional Laplace Mechanism, we show that it is difficult to anticipate the utility of such sanitized prompt. Poor utility has clear monetary consequences for LLM services charging on a pay-per-use model as well as great amount of computing resources wasted. To this end, we propose an architecture to predict the utility of a given sanitized prompt before it is sent to the LLM. We experimentally show that our architecture helps prevent such resource waste for up to 12% of the prompts. We also reproduce experiments from one of the most cited paper on distance-based DP for text sanitization and show that a potential performance-driven implementation choice completely changes the output while not being explicitly defined in the paper.
- Abstract(参考訳): オンラインのLarge Language Modelsとのインタラクションは、プロバイダがそのプロンプトからユーザや企業に関する機密情報を収集する、プライバシー上の問題を提起する。
多次元ラプラス機構を用いてテキストのプロンプトに差分プライバシーを適用することができるが、このようなサニタイズされたプロンプトの有用性を期待することは困難である。
貧弱なユーティリティは、有料のサービスモデルに課金するLLMサービスに対して明らかな金銭的な結果をもたらし、大量のコンピューティングリソースを浪費する。
この目的のために, LLM に送信する前に, 与えられた衛生的プロンプトの有効性を予測するアーキテクチャを提案する。
我々のアーキテクチャは、最大12%のプロンプトでそのようなリソースの無駄を防ぐのに役立ちます。
また、テキスト衛生化のための距離ベースDPに関する最も引用された論文の1つから実験を再現し、本論文で明示的に定義されていない性能駆動型実装の選択が出力を完全に変更することを示す。
関連論文リスト
- Differentially Private Steering for Large Language Model Alignment [55.30573701583768]
本稿では,大規模言語モデルとプライベートデータセットの整合性に関する最初の研究について述べる。
本研究では, LLM underlineAment (PSA) アルゴリズムのためのtextitunderlinePrivate underlineSteeringを提案する。
以上の結果から,PSAはLPMアライメントのDP保証を実現し,性能の低下を最小限に抑えることができた。
論文 参考訳(メタデータ) (2025-01-30T17:58:36Z) - Evaluation of LLM Vulnerabilities to Being Misused for Personalized Disinformation Generation [0.5070610131852027]
大型言語モデル(LLM)は、偽ニュース記事を生成するために効果的に誤用することができる。
本研究は,近年のオープンおよびクローズドLCMの脆弱性評価により,このギャップを埋めるものである。
以上の結果から,より強力な安全フィルターとディファイラの必要性が示された。
論文 参考訳(メタデータ) (2024-12-18T09:48:53Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
大規模言語モデル(LLM)は多くのドメインに不可欠なものとなり、データ管理、マイニング、分析におけるアプリケーションを大幅に進歩させた。
この問題の批判的な性質にもかかわらず、LLMにおけるデータプライバシのリスクを総合的に評価する文献は存在しない。
本稿では,LLMにおけるデータプライバシリスクの体系的評価を目的としたツールキットであるLLM-PBEを紹介する。
論文 参考訳(メタデータ) (2024-08-23T01:37:29Z) - Robustifying Safety-Aligned Large Language Models through Clean Data Curation [11.273749179260468]
大きな言語モデル(LLM)は、有害なコンテンツを含むデータセットでトレーニングされた場合、脆弱性がある。
本稿では,両シナリオにおける敵対的影響に対処するためのデータキュレーションフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-24T04:50:38Z) - Locally Differentially Private In-Context Learning [8.659575019965152]
大規模な事前学習言語モデル(LLM)は、驚くべきインコンテキスト学習(ICL)能力を示している。
本稿では,文脈内学習(LDP-ICL)の局所的差分的フレームワークを提案する。
変圧器の勾配勾配降下による文脈内学習のメカニズムを考慮し,LDP-ICLにおけるプライバシとユーティリティのトレードオフ分析を行う。
論文 参考訳(メタデータ) (2024-05-07T06:05:43Z) - Understanding Privacy Risks of Embeddings Induced by Large Language Models [75.96257812857554]
大きな言語モデルは、人工知能の初期の兆候を示すが、幻覚に苦しむ。
1つの有望な解決策は、外部知識を埋め込みとして保存し、LLMを検索強化世代に支援することである。
近年の研究では、事前学習された言語モデルによるテキスト埋め込みから、元のテキストを部分的に再構築できることが実験的に示されている。
論文 参考訳(メタデータ) (2024-04-25T13:10:48Z) - Prevalence and prevention of large language model use in crowd work [11.554258761785512]
大規模言語モデル (LLM) の使用は, 集団作業者の間で広く普及していることを示す。
目標緩和戦略は, LLM の使用量を大幅に削減するが, 排除はしない。
論文 参考訳(メタデータ) (2023-10-24T09:52:09Z) - "It's a Fair Game", or Is It? Examining How Users Navigate Disclosure Risks and Benefits When Using LLM-Based Conversational Agents [27.480959048351973]
大規模言語モデル(LLM)ベースの会話エージェント(CA)の普及は、多くのプライバシー上の懸念を引き起こす。
実世界のChatGPT会話における機密情報開示を分析し,19名のLCMユーザを対象に半構造化インタビューを行った。
LLMベースのCAを使用する場合,ユーザは常に,プライバシやユーティリティ,利便性のトレードオフに直面しています。
論文 参考訳(メタデータ) (2023-09-20T21:34:36Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
本稿では,現代大規模言語モデル (LLM) の誤用の可能性について検討する。
本研究は, LLMが効果的な誤情報発生器として機能し, DOQAシステムの性能が著しく低下することを明らかにする。
論文 参考訳(メタデータ) (2023-05-23T04:10:26Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。