論文の概要: On the physics of nested Markov models: a generalized probabilistic theory perspective
- arxiv url: http://arxiv.org/abs/2411.11614v1
- Date: Mon, 18 Nov 2024 14:40:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:34:16.664354
- Title: On the physics of nested Markov models: a generalized probabilistic theory perspective
- Title(参考訳): ネスト型マルコフモデルの物理:一般化確率論の観点から
- Authors: Xingjian Zhang, Yuhao Wang,
- Abstract要約: 一般化確率論のレンズを通してネストされたマルコフモデルを検査する。
ネストされたマルコフモデルを定義するすべての等式制約が、有効理論を独立に保持することを示す。
我々は,高次元ベル型因果構造から投影される有効分布を定義する新しい因果モデルを確立する。
- 参考スコア(独自算出の注目度): 5.4647257994524
- License:
- Abstract: Determining potential probability distributions with a given causal graph is vital for causality studies. To bypass the difficulty in characterizing latent variables in a Bayesian network, the nested Markov model provides an elegant algebraic approach by listing exactly all the equality constraints on the observed variables. However, this algebraically motivated causal model comprises distributions outside Bayesian networks, and its physical interpretation remains vague. In this work, we inspect the nested Markov model through the lens of generalized probabilistic theory, an axiomatic framework to describe general physical theories. We prove that all the equality constraints defining the nested Markov model hold valid theory-independently. Yet, we show this model generally contains distributions not implementable even within such relaxed physical theories subjected to merely the relativity principles and mild probabilistic rules. To interpret the origin of such a gap, we establish a new causal model that defines valid distributions as projected from a high-dimensional Bell-type causal structure. The new model unveils inequality constraints induced by relativity principles, or equivalently high-dimensional conditional independences, which are absent in the nested Markov model. Nevertheless, we also notice that the restrictions on states and measurements introduced by the generalized probabilistic theory framework can pose additional inequality constraints beyond the new causal model. As a by-product, we discover a new causal structure exhibiting strict gaps between the distribution sets of a Bayesian network, generalized probabilistic theories, and the nested Markov model. We anticipate our results will enlighten further explorations on the unification of algebraic and physical perspectives of causality.
- Abstract(参考訳): 因果グラフによる潜在的な確率分布の決定は因果関係の研究に不可欠である。
ベイズネットワークにおける潜伏変数の特徴付けの難しさを回避するために、ネストされたマルコフモデルは、観測された変数のすべての等式制約を正確にリストアップすることで、エレガントな代数的アプローチを提供する。
しかし、この代数的動機付けられた因果モデルはベイズネットワークの外の分布を含み、その物理的解釈はあいまいである。
本研究では、一般的な物理理論を記述するための公理的枠組みである一般化確率論のレンズを通してネストされたマルコフモデルを検査する。
ネストされたマルコフモデルを定義するすべての等式制約が、有効理論を独立に保持することを示す。
しかし、このモデルは一般に、単に相対論的原理と穏やかな確率論的規則に従うような緩和された物理理論においてさえ実現不可能な分布を含むことを示す。
このようなギャップの起源を解釈するために,高次元ベル型因果構造から投影される有効分布を定義する新たな因果モデルを構築した。
この新しいモデルでは、相対性理論によって引き起こされる不等式制約や、ネストされたマルコフモデルにはない同値な高次元条件独立が明らかにされている。
それにもかかわらず、一般化確率論フレームワークによって導入された状態や測定の制限が、新しい因果モデルを超えたさらなる不等式制約を生じさせることにも気づく。
副産物として、ベイズネットワークの分布集合と一般化確率論、ネストされたマルコフモデルの間に厳密なギャップを示す新しい因果構造が発見された。
我々は、因果関係の代数的および物理的視点の統一に関するさらなる研究を期待する。
関連論文リスト
- Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
自然の高次元データから学習する概念は、ヒューマンアライメントと解釈可能な機械学習モデルの構築の可能性を秘めている。
我々は概念を階層的因果モデルを通して関連付けられた離散潜在因果変数として定式化する。
我々は、理論的な主張を合成データ実験で裏付ける。
論文 参考訳(メタデータ) (2024-06-01T18:01:03Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
因果表現の識別可能性に寄与する分布シフトのタイプを決定する。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
論文 参考訳(メタデータ) (2024-03-23T04:13:55Z) - Derivation of Standard Quantum Theory via State Discrimination [53.64687146666141]
一般確率理論(英: General Probabilistic Theories, GPTs)は、標準量子論を解くための新しい情報理論のアプローチである。
一般モデルにおける状態判別と呼ばれる情報処理における性能のバウンダリに着目する。
我々は,GPTの一般モデルから標準量子論を,状態判別のための性能の境界によって特徴づける。
論文 参考訳(メタデータ) (2023-07-21T00:02:11Z) - Axiomatization of Interventional Probability Distributions [4.02487511510606]
因果的介入は、do-calculusの規則の下で公理化される。
我々の公理化の下では、インターベンジド分布は定義されたインターベンジド因果グラフに対するマルコフ分布であることが示される。
また、自然構造因果モデルの大規模なクラスが、ここで提示される理論を満たすことを示す。
論文 参考訳(メタデータ) (2023-05-08T06:07:42Z) - String Diagrams with Factorized Densities [0.0]
確率的プログラムと因果モデルの両方が、確率変数の集合上の合同確率密度を定義する。
この研究は、確率写像のマルコフ圏の研究に基づいて、射が各サンプル空間上で分解された結合密度と、サンプルから値を返す決定論的写像を結合する圏を定義する。
論文 参考訳(メタデータ) (2023-05-04T02:30:44Z) - Simplicial quantum contextuality [0.0]
ホモトピー理論において顕著な役割を果たす位相空間のモデルであるsimplicial setに基づく文脈性のための新しい枠組みを導入する。
提案手法は,測定シナリオを,測定結果の空間(集合ではなく)に拡張する。
ベルシナリオにおける非文脈性を特徴づけるためのファインの定理の新しい証明をトポロジカルに着想を得たものである。
論文 参考訳(メタデータ) (2022-04-13T22:03:28Z) - Causal Expectation-Maximisation [70.45873402967297]
ポリツリーグラフを特徴とするモデルにおいても因果推論はNPハードであることを示す。
我々は因果EMアルゴリズムを導入し、分類的表現変数のデータから潜伏変数の不確かさを再構築する。
我々は、反事実境界が構造方程式の知識なしにしばしば計算できるというトレンドのアイデアには、目立たずの制限があるように思える。
論文 参考訳(メタデータ) (2020-11-04T10:25:13Z) - Generalization Properties of Optimal Transport GANs with Latent
Distribution Learning [52.25145141639159]
本研究では,潜伏分布とプッシュフォワードマップの複雑さの相互作用が性能に与える影響について検討する。
我々の分析に感銘を受けて、我々はGANパラダイム内での潜伏分布とプッシュフォワードマップの学習を提唱した。
論文 参考訳(メタデータ) (2020-07-29T07:31:33Z) - Conditional independences and causal relations implied by sets of
equations [1.847740135967371]
我々はシモンの因果順序付けアルゴリズムを用いて因果順序付けグラフを構築する。
ある種の特異な可解性仮定の下で方程式に対する完全介入の効果を表現する。
このアプローチが既存の因果モデリングフレームワークの制約を明らかにし,対処する方法について論じる。
論文 参考訳(メタデータ) (2020-07-14T17:00:28Z) - Contextuality scenarios arising from networks of stochastic processes [68.8204255655161]
経験的モデルは、その分布が X 上の合同分布を極小化することができなければ文脈的と言える。
我々は、多くのプロセス間の相互作用という、文脈的経験的モデルの異なる古典的な源泉を示す。
長期にわたるネットワークの統計的挙動は、経験的モデルを一般的な文脈的かつ強い文脈的にする。
論文 参考訳(メタデータ) (2020-06-22T16:57:52Z) - A structure theorem for generalized-noncontextual ontological models [0.0]
我々は、トモグラフィ的に局所的な操作理論の一般化された非文脈的存在論的モデルが驚くほど厳密で単純な数学的構造を持つことを示すために、プロセス理論の枠組みを用いる。
我々は,古典性の概念の同値性に関する既知結果を,準備尺度から任意の構成シナリオまで拡張する。
論文 参考訳(メタデータ) (2020-05-14T17:28:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。