論文の概要: Sensor-fusion based Prognostics Framework for Complex Engineering Systems Exhibiting Multiple Failure Modes
- arxiv url: http://arxiv.org/abs/2411.12159v1
- Date: Tue, 19 Nov 2024 01:52:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:37:19.951410
- Title: Sensor-fusion based Prognostics Framework for Complex Engineering Systems Exhibiting Multiple Failure Modes
- Title(参考訳): センサフュージョンに基づく複数故障モードの複合工学システムのための予測フレームワーク
- Authors: Benjamin Peters, Ayush Mohanty, Xiaolei Fang, Stephen K. Robinson, Nagi Gebraeel,
- Abstract要約: 複雑なエンジニアリングシステムは、しばしば複数の障害モードを必要とする。
本稿では,ラベルのないトレーニングデータセットに対して,クラスタリングとセンサの選択を同時に行う手法を提案する。
- 参考スコア(独自算出の注目度): 1.5379084885764847
- License:
- Abstract: Complex engineering systems are often subject to multiple failure modes. Developing a remaining useful life (RUL) prediction model that does not consider the failure mode causing degradation is likely to result in inaccurate predictions. However, distinguishing between causes of failure without manually inspecting the system is nontrivial. This challenge is increased when the causes of historically observed failures are unknown. Sensors, which are useful for monitoring the state-of-health of systems, can also be used for distinguishing between multiple failure modes as the presence of multiple failure modes results in discriminatory behavior of the sensor signals. When systems are equipped with multiple sensors, some sensors may exhibit behavior correlated with degradation, while other sensors do not. Furthermore, which sensors exhibit this behavior may differ for each failure mode. In this paper, we present a simultaneous clustering and sensor selection approach for unlabeled training datasets of systems exhibiting multiple failure modes. The cluster assignments and the selected sensors are then utilized in real-time to first diagnose the active failure mode and then to predict the system RUL. We validate the complete pipeline of the methodology using a simulated dataset of systems exhibiting two failure modes and on a turbofan degradation dataset from NASA.
- Abstract(参考訳): 複雑なエンジニアリングシステムは、しばしば複数の障害モードを必要とする。
劣化の原因となる障害モードを考慮しない残りの有用寿命(RUL)予測モデルの開発は、不正確な予測をもたらす可能性がある。
しかし、手動でシステムを検査せずに失敗の原因を区別するのは簡単ではない。
この課題は、歴史的に観察された失敗の原因が不明な場合に増大する。
システムの状態監視に有用なセンサは、複数の障害モードの存在がセンサ信号の識別行動を引き起こすため、複数の障害モードを区別するためにも使用できる。
システムに複数のセンサーが搭載されている場合、いくつかのセンサーは劣化と相関する振る舞いを示すが、他のセンサーは機能しない。
さらに、この動作を示すセンサは、障害モード毎に異なる場合がある。
本稿では,複数の障害モードを示すシステムのラベルなしトレーニングデータセットに対して,クラスタリングとセンサの選択を同時に行う手法を提案する。
次に、クラスタ割り当てと選択されたセンサをリアルタイムで利用して、まずアクティブ障害モードを診断し、次にシステムRULを予測する。
2つの故障モードを示すシステムのシミュレーションデータセットと、NASAのターボファン分解データセットを用いて、方法論の完全なパイプラインを検証する。
関連論文リスト
- Degradation Modeling and Prognostic Analysis Under Unknown Failure Modes [17.72961616186932]
操作ユニットは複雑なシステムで様々な障害モードを経験します。
現在の予測的アプローチは、劣化中の障害モードを無視したり、既知の障害モードラベルを仮定する。
センサ信号の高次元性と複雑な関係は、故障モードを正確に識別することが困難である。
論文 参考訳(メタデータ) (2024-02-29T15:57:09Z) - A Comparison of Residual-based Methods on Fault Detection [6.675805308519987]
本研究では,産業システムにおける欠陥検出のための残差に基づく2つのアプローチを比較した。
性能評価は, 健康指標構築, 断層検出, 健康指標解釈の3つの課題に焦点をあてる。
その結果、両モデルとも平均20サイクルの遅延で故障を検出でき、偽陽性率を低く維持できることがわかった。
論文 参考訳(メタデータ) (2023-09-05T14:39:27Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - Sensor Fault Detection and Isolation in Autonomous Nonlinear Systems
Using Neural Network-Based Observers [6.432798111887824]
センサ故障検出分離法(s-FDI)は一般的な非線形システムに適用される。
このアプローチの主な側面は、ニューラルネットワークベースのKazantzis-Kravaris/Luenberger(KKL)オブザーバの利用である。
論文 参考訳(メタデータ) (2023-04-18T09:05:07Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
従来の手法では、データの時系列ダイナミクスと、異なるセンサーの特徴の関連性の両方をめったに利用していない、と我々は主張する。
我々はDynImpと呼ばれるモデルを提案し、特徴軸に沿って近接する隣人と異なる時間点の欠如を扱う。
本手法は, 関連センサのマルチモーダル性特性を活かし, 履歴時系列のダイナミックスから学習し, 極端に欠落した状態でデータを再構築することができることを示す。
論文 参考訳(メタデータ) (2022-09-26T21:59:14Z) - Anomaly Detection and Inter-Sensor Transfer Learning on Smart
Manufacturing Datasets [6.114996271792091]
スマートマニュファクチャリングシステムの目標は、運用コストを削減し、ダウンタイムをなくすために、失敗を迅速に検出(または予測)することである。
これはしばしば、システムから取得したセンサーの日程内で異常を検出することに起因する。
スマートマニュファクチャリングアプリケーションドメインは、ある種の健全な技術的課題を提起します。
予測的障害分類が達成できることを示し、予測的メンテナンスの道を開く。
論文 参考訳(メタデータ) (2022-06-13T17:51:24Z) - Two-Stage Deep Anomaly Detection with Heterogeneous Time Series Data [3.43862266155801]
本稿では,工場組立ラインから収集した製造データセットを用いたデータ駆動型異常検出フレームワークを提案する。
ステージIでは,動作周期信号で訓練されたモデルを用いて異常候補を選択し,ステージIIでは候補の中から異常事象を検出する。
我々のフレームワークの特長は、動作サイクル信号がまず異常点を見つけるために利用されるのに対し、センサ信号は異常点を除去するために活用される点である。
論文 参考訳(メタデータ) (2022-02-10T15:32:38Z) - Tracking the risk of a deployed model and detecting harmful distribution
shifts [105.27463615756733]
実際には、デプロイされたモデルのパフォーマンスが大幅に低下しないという、良心的なシフトを無視することは理にかなっている。
我々は,警告を発射する有効な方法は,(a)良性な警告を無視しながら有害なシフトを検知し,(b)誤報率を増大させることなく,モデル性能の連続的なモニタリングを可能にすることを論じる。
論文 参考訳(メタデータ) (2021-10-12T17:21:41Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Bayesian Autoencoders for Drift Detection in Industrial Environments [69.93875748095574]
オートエンコーダは、マルチセンサー環境で異常を検出するために使用される教師なしモデルである。
異常は、実際の環境の変化(実際のドリフト)や、故障した感覚デバイス(仮想ドリフト)から生じる。
論文 参考訳(メタデータ) (2021-07-28T10:19:58Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。