論文の概要: Sampling and Integration of Logconcave Functions by Algorithmic Diffusion
- arxiv url: http://arxiv.org/abs/2411.13462v1
- Date: Wed, 20 Nov 2024 17:10:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:12:48.772726
- Title: Sampling and Integration of Logconcave Functions by Algorithmic Diffusion
- Title(参考訳): アルゴリズム拡散によるLogconcave関数のサンプリングと統合
- Authors: Yunbum Kook, Santosh S. Vempala,
- Abstract要約: 任意の対数凹関数のサンプリング,丸化,統合の複雑さについて検討する。
我々の新しいアプローチは、一般的なログコンケーブ関数に対して、20年近くで最初の複雑さの改善を提供する。
- 参考スコア(独自算出の注目度): 8.655526882770742
- License:
- Abstract: We study the complexity of sampling, rounding, and integrating arbitrary logconcave functions. Our new approach provides the first complexity improvements in nearly two decades for general logconcave functions for all three problems, and matches the best-known complexities for the special case of uniform distributions on convex bodies. For the sampling problem, our output guarantees are significantly stronger than previously known, and lead to a streamlined analysis of statistical estimation based on dependent random samples.
- Abstract(参考訳): 任意の対数凹関数のサンプリング,丸化,統合の複雑さについて検討する。
我々の新しいアプローチは、3つの問題すべてに対して一般的な対数凹関数に対して約20年で最初の複雑性改善を提供し、凸体上の一様分布の特別な場合において最もよく知られた複雑さと一致する。
サンプリング問題では, 出力保証は従来よりもかなり強く, 従属確率標本に基づく統計的推定の合理化分析が導かれる。
関連論文リスト
- Unified Convergence Analysis for Score-Based Diffusion Models with Deterministic Samplers [49.1574468325115]
決定論的サンプリングのための統合収束分析フレームワークを提案する。
我々のフレームワークは$tilde O(d2/epsilon)$の反復複雑性を実現する。
また,Denoising Implicit Diffusion Models (DDIM) タイプのサンプルについて詳細な分析を行った。
論文 参考訳(メタデータ) (2024-10-18T07:37:36Z) - In-and-Out: Algorithmic Diffusion for Sampling Convex Bodies [7.70133333709347]
高次元凸体を一様にサンプリングするための新しいランダムウォークを提案する。
出力をより強力な保証で、最先端のランタイムの複雑さを実現する。
論文 参考訳(メタデータ) (2024-05-02T16:15:46Z) - Improving Gradient-guided Nested Sampling for Posterior Inference [47.08481529384556]
本稿では,パフォーマンス,汎用的勾配誘導型ネストサンプリングアルゴリズム,$tt GGNS$を提案する。
後部分布から大量の高品質なサンプルを得るために,ネストサンプリングと生成フローネットワークを組み合わせる可能性を示す。
論文 参考訳(メタデータ) (2023-12-06T21:09:18Z) - Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and
Optimal Algorithms [64.10576998630981]
最適なヘッセン依存型サンプルの複雑さを, 初めて厳密に評価した。
ヘシアン非依存のアルゴリズムは、すべてのヘシアンインスタンスに対して最適なサンプル複雑さを普遍的に達成する。
本アルゴリズムにより得られたサンプルの最適複雑さは,重み付き雑音分布においても有効である。
論文 参考訳(メタデータ) (2023-06-21T17:03:22Z) - On the Complexity of a Practical Primal-Dual Coordinate Method [63.899427212054995]
ランダム・座標降下法(PURE-CD)を用いた原始双対アルゴリズムの複雑性境界を証明した。
バイマックス性能問題を解くための優れた外挿が得られることが示されている。
論文 参考訳(メタデータ) (2022-01-19T16:14:27Z) - Revisiting the Sample Complexity of Sparse Spectrum Approximation of
Gaussian Processes [60.479499225746295]
本稿では,ガウス過程に対して,パラメータ空間全体に対して同時に保持可能な保証付きスケーラブルな近似を導入する。
我々の近似は、スパーススペクトルガウス過程(SSGP)のための改良されたサンプル複雑性解析から得られる。
論文 参考訳(メタデータ) (2020-11-17T05:41:50Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
オンラインデータストリームによって生成される有限個の点からなるランダムな確率測度に対する人口推定バリセンタ問題を考察する。
本稿では,この問題の構造を用いて,凸凹型サドル点再構成を行う。
ランダム確率測度の分布が離散的な場合、最適化アルゴリズムを提案し、その複雑性を推定する。
論文 参考訳(メタデータ) (2020-06-11T19:40:38Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
高速後部サンプリングのための簡易かつ汎用的なアプローチを提案する。
分離されたサンプルパスがガウス過程の後部を通常のコストのごく一部で正確に表現する方法を実証する。
論文 参考訳(メタデータ) (2020-02-21T14:03:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。