論文の概要: Metacognition for Unknown Situations and Environments (MUSE)
- arxiv url: http://arxiv.org/abs/2411.13537v1
- Date: Wed, 20 Nov 2024 18:41:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:12:58.682943
- Title: Metacognition for Unknown Situations and Environments (MUSE)
- Title(参考訳): 未知の状況と環境(MUSE)のメタ認知
- Authors: Rodolfo Valiente, Praveen K. Pilly,
- Abstract要約: 未知の状況と環境(MUSE)フレームワークのメタ認知を提案する。
MUSEはメタ認知プロセス、特に自己認識と自己制御を自律エージェントに統合する。
エージェントは自己認識と自己制御の大幅な改善を示す。
- 参考スコア(独自算出の注目度): 3.2020845462590697
- License:
- Abstract: Metacognition--the awareness and regulation of one's cognitive processes--is central to human adaptability in unknown situations. In contrast, current autonomous agents often struggle in novel environments due to their limited capacity for adaptation. We hypothesize that metacognition is a critical missing ingredient in adaptive autonomous systems, equipping them with the cognitive flexibility needed to tackle unfamiliar challenges. Given the broad scope of metacognitive abilities, we focus on two key aspects: competence awareness and strategy selection for novel tasks. To this end, we propose the Metacognition for Unknown Situations and Environments (MUSE) framework, which integrates metacognitive processes--specifically self-awareness and self-regulation--into autonomous agents. We present two initial implementations of MUSE: one based on world modeling and another leveraging large language models (LLMs), both instantiating the metacognitive cycle. Our system continuously learns to assess its competence on a given task and uses this self-awareness to guide iterative cycles of strategy selection. MUSE agents show significant improvements in self-awareness and self-regulation, enabling them to solve novel, out-of-distribution tasks more effectively compared to Dreamer-v3-based reinforcement learning and purely prompt-based LLM agent approaches. This work highlights the promise of approaches inspired by cognitive and neural systems in enabling autonomous systems to adapt to new environments, overcoming the limitations of current methods that rely heavily on extensive training data.
- Abstract(参考訳): メタ認知(メタ認知) - 自分の認知過程の認識と規制 - 未知の状況における人間の適応性の中心である。
対照的に、現在の自律エージェントは適応能力に限界があるため、しばしば新しい環境に苦しむ。
我々は,メタ認知は適応型自律システムにおいて重要な欠落要素であり,不慣れな課題に対処するために必要な認知的柔軟性を備えていると仮定する。
メタ認知能力の幅広い範囲を考慮すると、新しいタスクに対する能力意識と戦略選択の2つの重要な側面に焦点を当てる。
この目的のために,メタ認知的プロセス - 特に自己認識と自己規制-を自律エージェントに統合する,未知の状況と環境のためのメタ認知(MUSE)フレームワークを提案する。
本稿では,世界モデルに基づくMUSEと,メタ認知サイクルのインスタンス化による大規模言語モデル(LLM)の2つの初期実装を提案する。
本システムは,与えられたタスクにおいてその能力を評価することを継続的に学び,この自己認識を用いて戦略選択の反復サイクルを導出する。
MUSEエージェントは、Dreamer-v3ベースの強化学習や純粋にプロンプトベースのLLMエージェントアプローチと比較して、より効果的に、新規な分散タスクを解くことができる。
この研究は、認知システムやニューラルネットワークにインスパイアされたアプローチの約束を強調し、自律システムが新しい環境に適応できるようにし、広範なトレーニングデータに大きく依存する現在の方法の限界を克服する。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
我々は,Bloomの分類にインスパイアされた新しいプロンプト技術であるBloomWiseを導入し,Large Language Models(LLMs)の性能を向上させる。
より洗練された認知スキルを身につける必要性に関する決定は、LLMによる自己評価に基づいている。
4つの一般的な算数推論データセットの広範な実験において,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-10-05T09:27:52Z) - CogniDual Framework: Self-Training Large Language Models within a Dual-System Theoretical Framework for Improving Cognitive Tasks [39.43278448546028]
カーネマンの二重系理論は人間の意思決定過程を解明し、素早い直感的なシステム1と合理的なシステム2を区別する。
近年の大きな言語モデル (LLMs) は、認知タスクにおける人間レベルの習熟度に近づきやすいツールとして位置づけられている。
本研究では、自己学習を通じて、意図的な推論から直感的な応答へと進化するLLM(textbfCognidual Framework for LLMs, CFLLMs)について述べる。
論文 参考訳(メタデータ) (2024-09-05T09:33:24Z) - I Know How: Combining Prior Policies to Solve New Tasks [17.214443593424498]
マルチタスク強化学習は、継続的に進化し、新しいシナリオに適応できるエージェントを開発することを目的としている。
新しいタスクごとにスクラッチから学ぶことは、実行可能な、あるいは持続可能な選択肢ではない。
我々は、共通の形式を提供する新しいフレームワーク、I Know Howを提案する。
論文 参考訳(メタデータ) (2024-06-14T08:44:51Z) - Ontology-Enhanced Decision-Making for Autonomous Agents in Dynamic and Partially Observable Environments [0.0]
この論文では、自律エージェントのためのオントロジー強化意思決定モデル(OntoDeM)を紹介している。
OntoDeMはエージェントのドメイン知識を充実させ、予期せぬイベントを解釈し、目標を生成または適応させ、より良い意思決定を可能にする。
OntoDeMは従来の学習アルゴリズムや高度な学習アルゴリズムと比較して、動的で部分的に観察可能な環境におけるエージェントの観察と意思決定を改善する上で優れた性能を示している。
論文 参考訳(メタデータ) (2024-05-27T22:52:23Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
大規模言語モデル(LLM)は、自然言語処理タスクの幅広い領域にわたる変換的進歩を触媒している。
我々は,自己認識型誤り識別と訂正機能を備えたLLMを実現するために,textbfCLEARと呼ばれる革新的なテキストメタ認知手法を提案する。
論文 参考訳(メタデータ) (2024-03-08T19:18:53Z) - Metacognition is all you need? Using Introspection in Generative Agents
to Improve Goal-directed Behavior [0.0]
生成エージェントのメタ認知モジュールを導入し,それぞれの思考過程や行動の観察を可能にした。
生成因子がゾンビ黙示録を生き残らなければならない状況を含む,様々なシナリオでメタ認知モジュールを検証した。
論文 参考訳(メタデータ) (2024-01-09T15:00:47Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
固有のモチベーションは、目標間のトレーニング時間を適切に割り当てるタスクに依存しないシグナルを生成することが証明されている。
内在的に動機付けられたオープンエンドラーニングの分野におけるほとんどの研究は、目標が互いに独立しているシナリオに焦点を当てているが、相互依存タスクの自律的な獲得を研究するのはごくわずかである。
特に,タスク間の関係に関する情報をアーキテクチャのより高レベルなレベルで組み込むことの重要性を示す。
そして、自律的に取得したシーケンスを格納する新しい学習層を追加することで、前者を拡張する新しいシステムであるH-GRAILを紹介する。
論文 参考訳(メタデータ) (2022-05-16T10:43:01Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
政治外学習の最近の進歩の上に構築された,概念的にシンプルで,汎用的で,モジュール的な補完的アプローチについて検討する。
このフレームワークは確率論的推論文学のアイデアにインスパイアされ、堅牢な非政治学習と事前の行動を組み合わせる。
提案手法は,メタ強化学習ベースラインと比較して,ホールドアウトタスクにおける競合適応性能を実現し,複雑なスパース・リワードシナリオにスケールすることができる。
論文 参考訳(メタデータ) (2020-09-10T14:16:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。