論文の概要: A Deep Learning Approach to Predict the Fall [of Price] of Cryptocurrency Long Before its Actual Fall
- arxiv url: http://arxiv.org/abs/2411.13615v2
- Date: Mon, 25 Nov 2024 13:33:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:22:18.203624
- Title: A Deep Learning Approach to Predict the Fall [of Price] of Cryptocurrency Long Before its Actual Fall
- Title(参考訳): 暗号通貨の下落を実際の下落よりずっと前に予測する深層学習手法
- Authors: Anika Tahsin Meem,
- Abstract要約: 本研究の目的は、暗号通貨市場のリスクファクターの大きさを予測することである。
当社のアプローチは、経験した問題や困難を克服することで、暗号通貨市場に投資する人々を支援します。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In modern times, the cryptocurrency market is one of the world's most rapidly rising financial markets. The cryptocurrency market is regarded to be more volatile and illiquid than traditional markets such as equities, foreign exchange, and commodities. The risk of this market creates an uncertain condition among the investors. The purpose of this research is to predict the magnitude of the risk factor of the cryptocurrency market. Risk factor is also called volatility. Our approach will assist people who invest in the cryptocurrency market by overcoming the problems and difficulties they experience. Our approach starts with calculating the risk factor of the cryptocurrency market from the existing parameters. In twenty elements of the cryptocurrency market, the risk factor has been predicted using different machine learning algorithms such as CNN, LSTM, BiLSTM, and GRU. All of the models have been applied to the calculated risk factor parameter. A new model has been developed to predict better than the existing models. Our proposed model gives the highest RMSE value of 1.3229 and the lowest RMSE value of 0.0089. Following our model, it will be easier for investors to trade in complicated and challenging financial assets like bitcoin, Ethereum, dogecoin, etc. Where the other existing models, the highest RMSE was 14.5092, and the lower was 0.02769. So, the proposed model performs much better than models with proper generalization. Using our approach, it will be easier for investors to trade in complicated and challenging financial assets like Bitcoin, Ethereum, and Dogecoin.
- Abstract(参考訳): 現代では、暗号通貨市場は世界で最も急速に成長している金融市場の一つである。
暗号通貨市場は、株式、外国為替、商品といった伝統的な市場よりも不安定で不透明であると考えられている。
この市場のリスクは投資家の間に不確実な状態を生み出します。
本研究の目的は、暗号通貨市場のリスクファクターの大きさを予測することである。
リスクファクターはボラティリティ(volatility)とも呼ばれる。
当社のアプローチは、経験した問題や困難を克服することで、暗号通貨市場に投資する人々を支援します。
私たちのアプローチは、既存のパラメータから暗号市場のリスクファクターを計算することから始まります。
暗号通貨市場の20の要素において、リスクファクタはCNN、LSTM、BiLSTM、GRUといった異なる機械学習アルゴリズムを用いて予測されている。
全てのモデルが計算されたリスクファクターパラメータに適用された。
既存のモデルよりも優れた予測を行うために、新しいモデルが開発されている。
提案モデルでは最大RMSE値が1.3229、最低RMSE値が0.0089である。
我々のモデルに従い、投資家はbitcoin、Ethereum、dodecoinなどの複雑で困難な金融資産で取引しやすくなるだろう。
他の既存のモデルでは、RMSEの最高値は14.5092であり、下位は0.02769であった。
したがって、提案モデルは適切な一般化を伴うモデルよりもはるかに優れた性能を発揮する。
このアプローチを使うことで、投資家はBitcoin、Ethereum、Dogecoinといった複雑で困難な金融資産で取引しやすくなるでしょう。
関連論文リスト
- Predicting Bitcoin Market Trends with Enhanced Technical Indicator Integration and Classification Models [6.39158540499473]
本研究では,暗号市場の方向性を予測するための分類に基づく機械学習モデルを提案する。
歴史的データと、移動平均収束分量、相対強度指数、ボリンジャーバンドなどの重要な技術指標を用いて訓練されている。
その結果、購入/販売信号の精度は92%を超えた。
論文 参考訳(メタデータ) (2024-10-09T14:29:50Z) - Cryptocurrency Price Forecasting Using XGBoost Regressor and Technical Indicators [2.038893829552158]
本研究では,暗号通貨の価格を予測するための機械学習手法を提案する。
我々は、XGBoost回帰モデルの訓練および供給のために、EMA(Exponential moving Avergence)やMACD( moving Avergence Divergence)といった重要な技術指標を活用している。
モデルの性能を様々なシミュレーションにより評価し,有望な結果を示す。
論文 参考訳(メタデータ) (2024-07-16T14:41:27Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - AI-Assisted Investigation of On-Chain Parameters: Risky Cryptocurrencies
and Price Factors [0.9831489366502302]
本稿では,歴史的データの解析と,オンチェーンパラメータを用いた人工知能アルゴリズムについて述べる。
歴史的暗号通貨のオンチェーンデータの解析を行い,価格と他のパラメータの相関性を測定した。
分析の結果,暗号通貨価格と最大供給量と総供給量との間に有意な負の相関がみられ,価格と24時間取引量との間には弱い正の相関が認められた。
論文 参考訳(メタデータ) (2023-08-11T09:20:28Z) - A Game of NFTs: Characterizing NFT Wash Trading in the Ethereum Blockchain [53.8917088220974]
非Fungible Token(NFT)市場は2021年に爆発的に成長し、2022年1月には月間貿易額が60億ドルに達した。
ウォッシュトレーディングの可能性に関する懸念が浮かび上がっており、あるパーティがNFTを取引してそのボリュームを人為的に膨らませる市場操作の形式である。
洗濯物取引は全NFTコレクションの5.66%に影響し、総生産量は3,406,110,774ドルである。
論文 参考訳(メタデータ) (2022-12-02T15:03:35Z) - Quantum computational finance: martingale asset pricing for incomplete
markets [69.73491758935712]
金融の価格問題に様々な量子技術を適用することができることを示す。
従来の研究と異なる3つの方法について議論する。
論文 参考訳(メタデータ) (2022-09-19T09:22:01Z) - Cryptocurrency Bubble Detection: A New Stock Market Dataset, Financial
Task & Hyperbolic Models [31.690290125073197]
バブル検出のための新しいマルチスパン識別タスクであるCryptoBubblesを公開・公開する。
我々はこのマルチスパン識別タスクに適した一連のシーケンス・ツー・シーケンス・ハイパーボリックモデルを開発する。
RedditとTwitterでCryptoBubblesとハイパーボリックモデルの実用性を示す。
論文 参考訳(メタデータ) (2022-05-11T08:10:02Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
本稿では,エージェント・ベースの観点から,これらのマーケット・メーカーの戦略に関する研究に焦点をあてる。
模擬株式市場における知的市場マーカー作成のための強化学習(Reinforcement Learning, RL)の適用を提案する。
論文 参考訳(メタデータ) (2021-12-08T14:55:21Z) - The Doge of Wall Street: Analysis and Detection of Pump and Dump Cryptocurrency Manipulations [50.521292491613224]
本稿では,インターネット上のコミュニティによって組織された2つの市場操作(ポンプとダンプと群衆ポンプ)について,詳細な分析を行う。
ポンプとダンプの仕組みは、株式市場と同じくらい古い詐欺だ。今や、緩やかに規制された暗号通貨市場において、新たな活力を得た。
本報告では,ポンプ群とダンプ群に関する3症例について報告する。
論文 参考訳(メタデータ) (2021-05-03T10:20:47Z) - Pump and Dumps in the Bitcoin Era: Real Time Detection of Cryptocurrency Market Manipulations [50.521292491613224]
インターネット上のコミュニティによって組織されたポンプとダンプの詳細な分析を行う。
これらのコミュニティがどのように組織化され、どのように詐欺を行うかを観察します。
本研究では,不正行為をリアルタイムに検出する手法を提案する。
論文 参考訳(メタデータ) (2020-05-04T21:36:18Z) - Ascertaining price formation in cryptocurrency markets with DeepLearning [8.413339060443878]
本論文は,近年の株式市場予測にディープラーニングを用いた成功に触発されたものである。
暗号通貨市場の特徴を高周波で分析・提示する。
私たちは、Bitcoinと米ドルのライブ為替レートの中間価格運動の予測について、一貫した78%の精度を達成しました。
論文 参考訳(メタデータ) (2020-02-09T20:23:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。