DrugGen: Advancing Drug Discovery with Large Language Models and Reinforcement Learning Feedback
- URL: http://arxiv.org/abs/2411.14157v1
- Date: Wed, 20 Nov 2024 01:21:07 GMT
- Title: DrugGen: Advancing Drug Discovery with Large Language Models and Reinforcement Learning Feedback
- Authors: Mahsa Sheikholeslami, Navid Mazrouei, Yousof Gheisari, Afshin Fasihi, Matin Irajpour, Ali Motahharynia,
- Abstract summary: DrugGen is an enhanced model based on the DrugGPT structure.
It is fine-tuned on approved drug-target interactions and optimized with proximal policy optimization.
By producing high-quality small molecules, DrugGen provides a high-performance medium for advancing pharmaceutical research and drug discovery.
- Score: 0.0
- License:
- Abstract: Traditional drug design faces significant challenges due to inherent chemical and biological complexities, often resulting in high failure rates in clinical trials. Deep learning advancements, particularly generative models, offer potential solutions to these challenges. One promising algorithm is DrugGPT, a transformer-based model, that generates small molecules for input protein sequences. Although promising, it generates both chemically valid and invalid structures and does not incorporate the features of approved drugs, resulting in time-consuming and inefficient drug discovery. To address these issues, we introduce DrugGen, an enhanced model based on the DrugGPT structure. DrugGen is fine-tuned on approved drug-target interactions and optimized with proximal policy optimization. By giving reward feedback from protein-ligand binding affinity prediction using pre-trained transformers (PLAPT) and a customized invalid structure assessor, DrugGen significantly improves performance. Evaluation across multiple targets demonstrated that DrugGen achieves 100% valid structure generation compared to 95.5% with DrugGPT and produced molecules with higher predicted binding affinities (7.22 [6.30-8.07]) compared to DrugGPT (5.81 [4.97-6.63]) while maintaining diversity and novelty. Docking simulations further validate its ability to generate molecules targeting binding sites effectively. For example, in the case of fatty acid-binding protein 5 (FABP5), DrugGen generated molecules with superior docking scores (FABP5/11, -9.537 and FABP5/5, -8.399) compared to the reference molecule (Palmitic acid, -6.177). Beyond lead compound generation, DrugGen also shows potential for drug repositioning and creating novel pharmacophores for existing targets. By producing high-quality small molecules, DrugGen provides a high-performance medium for advancing pharmaceutical research and drug discovery.
Related papers
- Regressor-free Molecule Generation to Support Drug Response Prediction [83.25894107956735]
Conditional generation based on the target IC50 score can obtain a more effective sampling space.
Regressor-free guidance combines a diffusion model's score estimation with a regression controller model's gradient based on number labels.
arXiv Detail & Related papers (2024-05-23T13:22:17Z) - drGAT: Attention-Guided Gene Assessment of Drug Response Utilizing a Drug-Cell-Gene Heterogeneous Network [9.637695046701493]
drGAT is a graph deep learning model that can predict sensitivity to drugs.
drGAT has superior performance over existing models, achieving 78% accuracy and 76% F1 score for 269 DNA-damaging compounds.
Our method can be used to accurately predict sensitivity to drugs and may be useful in the identification of biomarkers relating to the treatment of cancer patients.
arXiv Detail & Related papers (2024-05-14T22:16:52Z) - Improving Targeted Molecule Generation through Language Model Fine-Tuning Via Reinforcement Learning [0.0]
We introduce an innovative de-novo drug design strategy, which harnesses the capabilities of language models to devise targeted drugs for specific proteins.
Our method integrates a composite reward function, combining considerations of drug-target interaction and molecular validity.
arXiv Detail & Related papers (2024-05-10T22:19:12Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
Existing structured-based drug design methods treat all ligand atoms equally.
We propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold.
Our approach achieves state-of-the-art performance in generating high-affinity molecules.
arXiv Detail & Related papers (2024-02-26T05:21:21Z) - Energy-based Generative Models for Target-specific Drug Discovery [7.509129971169722]
We develop an energy-based probabilistic model for computational target-specific drug discovery.
Results show that our proposed TagMol can generate molecules with similar binding affinity scores as real molecules.
arXiv Detail & Related papers (2022-12-05T16:41:36Z) - Drug-target affinity prediction method based on consistent expression of
heterogeneous data [0.0]
We propose a method for predicting drug-target binding affinity using deep learning models.
The proposed model demonstrates its accuracy and effectiveness in predicting drug-target binding affinity on the DAVIS and KIBA datasets.
arXiv Detail & Related papers (2022-11-13T02:58:03Z) - Tailoring Molecules for Protein Pockets: a Transformer-based Generative
Solution for Structured-based Drug Design [133.1268990638971]
De novo drug design based on the structure of a target protein can provide novel drug candidates.
We present a generative solution named TamGent that can directly generate candidate drugs from scratch for a given target.
arXiv Detail & Related papers (2022-08-30T09:32:39Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
We propose a novel approach to model intermolecular information with a three-way Transformer-based architecture.
Intermolecular Graph Transformer (IGT) outperforms state-of-the-art approaches by 9.1% and 20.5% over the second best for binding activity and binding pose prediction respectively.
IGT exhibits promising drug screening ability against SARS-CoV-2 by identifying 83.1% active drugs that have been validated by wet-lab experiments with near-native predicted binding poses.
arXiv Detail & Related papers (2021-10-14T13:28:02Z) - MolDesigner: Interactive Design of Efficacious Drugs with Deep Learning [61.74958429818077]
MolDesigner is a human-in-the-loop web user-interface (UI) for drug developers.
A developer can draw a drug molecule in the interface.
In the backend, more than 17 state-of-the-art DL models generate predictions on important indices that are crucial for a drug's efficacy.
arXiv Detail & Related papers (2020-10-05T21:25:25Z) - CogMol: Target-Specific and Selective Drug Design for COVID-19 Using
Deep Generative Models [74.58583689523999]
We propose an end-to-end framework, named CogMol, for designing new drug-like small molecules targeting novel viral proteins.
CogMol combines adaptive pre-training of a molecular SMILES Variational Autoencoder (VAE) and an efficient multi-attribute controlled sampling scheme.
CogMol handles multi-constraint design of synthesizable, low-toxic, drug-like molecules with high target specificity and selectivity.
arXiv Detail & Related papers (2020-04-02T18:17:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.