A Survey on Human-Centric LLMs
- URL: http://arxiv.org/abs/2411.14491v2
- Date: Tue, 26 Nov 2024 06:03:08 GMT
- Title: A Survey on Human-Centric LLMs
- Authors: Jing Yi Wang, Nicholas Sukiennik, Tong Li, Weikang Su, Qianyue Hao, Jingbo Xu, Zihan Huang, Fengli Xu, Yong Li,
- Abstract summary: Large language models (LLMs) can simulate human cognition and behavior.
This survey focuses on their performance in both individual tasks and collective tasks.
- Score: 11.49752599240738
- License:
- Abstract: The rapid evolution of large language models (LLMs) and their capacity to simulate human cognition and behavior has given rise to LLM-based frameworks and tools that are evaluated and applied based on their ability to perform tasks traditionally performed by humans, namely those involving cognition, decision-making, and social interaction. This survey provides a comprehensive examination of such human-centric LLM capabilities, focusing on their performance in both individual tasks (where an LLM acts as a stand-in for a single human) and collective tasks (where multiple LLMs coordinate to mimic group dynamics). We first evaluate LLM competencies across key areas including reasoning, perception, and social cognition, comparing their abilities to human-like skills. Then, we explore real-world applications of LLMs in human-centric domains such as behavioral science, political science, and sociology, assessing their effectiveness in replicating human behaviors and interactions. Finally, we identify challenges and future research directions, such as improving LLM adaptability, emotional intelligence, and cultural sensitivity, while addressing inherent biases and enhancing frameworks for human-AI collaboration. This survey aims to provide a foundational understanding of LLMs from a human-centric perspective, offering insights into their current capabilities and potential for future development.
Related papers
- Understanding the Human-LLM Dynamic: A Literature Survey of LLM Use in Programming Tasks [0.850206009406913]
Large Language Models (LLMs) are transforming programming practices, offering significant capabilities for code generation activities.
This paper focuses on their use in programming tasks, drawing insights from user studies that assess the impact of LLMs on programming tasks.
arXiv Detail & Related papers (2024-10-01T19:34:46Z) - Large Language Models and Cognitive Science: A Comprehensive Review of Similarities, Differences, and Challenges [12.390859712280324]
This comprehensive review explores the intersection of Large Language Models (LLMs) and cognitive science.
We analyze methods for evaluating LLMs cognitive abilities and discuss their potential as cognitive models.
We assess cognitive biases and limitations of LLMs, along with proposed methods for improving their performance.
arXiv Detail & Related papers (2024-09-04T02:30:12Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Comparing Rationality Between Large Language Models and Humans: Insights and Open Questions [6.201550639431176]
This paper focuses on the burgeoning prominence of large language models (LLMs)
We underscore the pivotal role of Reinforcement Learning from Human Feedback (RLHF) in augmenting LLMs' rationality and decision-making prowess.
arXiv Detail & Related papers (2024-03-14T18:36:04Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
We introduce the problem of Large Language Models (LLMs)-based human-agent collaboration for complex task-solving.
We propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC.
This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process.
arXiv Detail & Related papers (2024-02-20T11:03:36Z) - Systematic Biases in LLM Simulations of Debates [12.933509143906141]
We study the limitations of Large Language Models in simulating human interactions.
Our findings indicate a tendency for LLM agents to conform to the model's inherent social biases.
These results underscore the need for further research to develop methods that help agents overcome these biases.
arXiv Detail & Related papers (2024-02-06T14:51:55Z) - Collaborative Evaluation: Exploring the Synergy of Large Language Models
and Humans for Open-ended Generation Evaluation [71.76872586182981]
Large language models (LLMs) have emerged as a scalable and cost-effective alternative to human evaluations.
We propose a Collaborative Evaluation pipeline CoEval, involving the design of a checklist of task-specific criteria and the detailed evaluation of texts.
arXiv Detail & Related papers (2023-10-30T17:04:35Z) - MetaAgents: Simulating Interactions of Human Behaviors for LLM-based
Task-oriented Coordination via Collaborative Generative Agents [27.911816995891726]
We introduce collaborative generative agents, endowing LLM-based Agents with consistent behavior patterns and task-solving abilities.
We propose a novel framework that equips collaborative generative agents with human-like reasoning abilities and specialized skills.
Our work provides valuable insights into the role and evolution of Large Language Models in task-oriented social simulations.
arXiv Detail & Related papers (2023-10-10T10:17:58Z) - A Survey on Evaluation of Large Language Models [87.60417393701331]
Large language models (LLMs) are gaining increasing popularity in both academia and industry.
This paper focuses on three key dimensions: what to evaluate, where to evaluate, and how to evaluate.
arXiv Detail & Related papers (2023-07-06T16:28:35Z) - Evaluating and Inducing Personality in Pre-trained Language Models [78.19379997967191]
We draw inspiration from psychometric studies by leveraging human personality theory as a tool for studying machine behaviors.
To answer these questions, we introduce the Machine Personality Inventory (MPI) tool for studying machine behaviors.
MPI follows standardized personality tests, built upon the Big Five Personality Factors (Big Five) theory and personality assessment inventories.
We devise a Personality Prompting (P2) method to induce LLMs with specific personalities in a controllable way.
arXiv Detail & Related papers (2022-05-20T07:32:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.