Multi-agent reinforcement learning strategy to maximize the lifetime of Wireless Rechargeable
- URL: http://arxiv.org/abs/2411.14496v1
- Date: Thu, 21 Nov 2024 02:18:34 GMT
- Title: Multi-agent reinforcement learning strategy to maximize the lifetime of Wireless Rechargeable
- Authors: Bao Nguyen,
- Abstract summary: The thesis proposes a generalized charging framework for multiple mobile chargers to maximize the network lifetime.
A multi-point charging model is leveraged to enhance charging efficiency, where the MC can charge multiple sensors simultaneously at each charging location.
The proposal allows reinforcement algorithms to be applied to different networks without requiring extensive retraining.
- Score: 0.32634122554913997
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The thesis proposes a generalized charging framework for multiple mobile chargers to maximize the network lifetime and ensure target coverage and connectivity in large scale WRSNs. Moreover, a multi-point charging model is leveraged to enhance charging efficiency, where the MC can charge multiple sensors simultaneously at each charging location. The thesis proposes an effective Decentralized Partially Observable Semi-Markov Decision Process (Dec POSMDP) model that promotes Mobile Chargers (MCs) cooperation and detects optimal charging locations based on realtime network information. Furthermore, the proposal allows reinforcement algorithms to be applied to different networks without requiring extensive retraining. To solve the Dec POSMDP model, the thesis proposes an Asynchronous Multi Agent Reinforcement Learning algorithm (AMAPPO) based on the Proximal Policy Optimization algorithm (PPO).
Related papers
- Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks [60.085771314013044]
Low-altitude economy holds significant potential for development in areas such as communication and sensing.
We propose a Clustering-based Multi-agent Deep Deterministic Policy Gradient (CMADDPG) algorithm to address the multi-UAV cooperative task scheduling challenges in SAGIN.
arXiv Detail & Related papers (2024-12-14T06:17:33Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
Non-orthogonal multiple access (NOMA) enables multiple users to share the same frequency band, and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
deploying STAR-RIS indoors presents challenges in interference mitigation, power consumption, and real-time configuration.
A novel network architecture utilizing multiple access points (APs), STAR-RISs, and NOMA is proposed for indoor communication.
arXiv Detail & Related papers (2024-06-19T07:17:04Z) - Multi-agent Reinforcement Learning for Energy Saving in Multi-Cell
Massive MIMO Systems [6.614630708703594]
We develop a multi-agent reinforcement learning (MARL) algorithm to minimize the total energy consumption of base stations (BSs) in a multi-cell network.
We show that the trained MAPPO agent achieves better performance compared to baseline policies.
Specifically, compared to the auto sleep mode 1 algorithm, the MAPPO-neighbor policy reduces power consumption by approximately 8.7% during low-traffic hours and improves energy efficiency by approximately 19% during high-traffic hours, respectively.
arXiv Detail & Related papers (2024-02-05T17:15:00Z) - Inter-Cell Network Slicing With Transfer Learning Empowered Multi-Agent
Deep Reinforcement Learning [6.523367518762879]
Network slicing enables operators to efficiently support diverse applications on a common physical infrastructure.
The ever-increasing densification of network deployment leads to complex and non-trivial inter-cell interference.
We develop a DIRP algorithm with multiple deep reinforcement learning (DRL) agents to cooperatively optimize resource partition in individual cells.
arXiv Detail & Related papers (2023-06-20T14:14:59Z) - Multi-Microgrid Collaborative Optimization Scheduling Using an Improved
Multi-Agent Soft Actor-Critic Algorithm [8.461537684562776]
A multi-microgrid (MMG) system consists of multiple renewable energy microgrids belonging to different operating entities.
This paper proposes a MMG collaborative optimization scheduling model based on a multi-agent centralized training distributed execution framework.
arXiv Detail & Related papers (2023-04-01T22:44:52Z) - Coverage and Capacity Optimization in STAR-RISs Assisted Networks: A
Machine Learning Approach [102.00221938474344]
A novel model is proposed for the coverage and capacity optimization of simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) assisted networks.
A loss function-based update strategy is the core point, which is able to calculate weights for both loss functions of coverage and capacity by a min-norm solver at each update.
The numerical results demonstrate that the investigated update strategy outperforms the fixed weight-based MO algorithms.
arXiv Detail & Related papers (2022-04-13T13:52:22Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
This paper investigates a master unmanned aerial vehicle (MUAV)-powered Internet of Things (IoT) network.
We propose using a rechargeable auxiliary UAV (AUAV) equipped with an intelligent reflecting surface (IRS) to enhance the communication signals from the MUAV.
Under the proposed model, we investigate the optimal collaboration strategy of these energy-limited UAVs to maximize the accumulated throughput of the IoT network.
arXiv Detail & Related papers (2021-12-20T15:45:28Z) - A Q-Learning-based Approach for Distributed Beam Scheduling in mmWave
Networks [18.22250038264899]
We consider the problem of distributed downlink beam scheduling and power allocation for millimeter-Wave (mmWave) cellular networks.
Multiple base stations belonging to different service operators share the same unlicensed spectrum with no central coordination or cooperation among them.
We propose a distributed scheduling approach to power allocation and adaptation for efficient interference management over the shared spectrum by modeling each BS as an independent Q-learning agent.
arXiv Detail & Related papers (2021-10-17T02:58:13Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z) - Distributed Resource Scheduling for Large-Scale MEC Systems: A
Multi-Agent Ensemble Deep Reinforcement Learning with Imitation Acceleration [44.40722828581203]
We propose a distributed intelligent resource scheduling (DIRS) framework, which includes centralized training relying on the global information and distributed decision making by each agent deployed in each MEC server.
We first introduce a novel multi-agent ensemble-assisted distributed deep reinforcement learning (DRL) architecture, which can simplify the overall neural network structure of each agent.
Secondly, we apply action refinement to enhance the exploration ability of the proposed DIRS framework, where the near-optimal state-action pairs are obtained by a novel L'evy flight search.
arXiv Detail & Related papers (2020-05-21T20:04:40Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.