Ordinal Multiple-instance Learning for Ulcerative Colitis Severity Estimation with Selective Aggregated Transformer
- URL: http://arxiv.org/abs/2411.14750v1
- Date: Fri, 22 Nov 2024 06:11:35 GMT
- Title: Ordinal Multiple-instance Learning for Ulcerative Colitis Severity Estimation with Selective Aggregated Transformer
- Authors: Kaito Shiku, Kazuya Nishimura, Daiki Suehiro, Kiyohito Tanaka, Ryoma Bise,
- Abstract summary: We propose a patient-level severity estimation method by a transformer with selective aggregator tokens.
Our method can effectively aggregate features of severe parts from a set of images captured in each patient.
Experiments demonstrate the effectiveness of the proposed method on two datasets compared with the state-of-the-art MIL methods.
- Score: 4.2875024530011085
- License:
- Abstract: Patient-level diagnosis of severity in ulcerative colitis (UC) is common in real clinical settings, where the most severe score in a patient is recorded. However, previous UC classification methods (i.e., image-level estimation) mainly assumed the input was a single image. Thus, these methods can not utilize severity labels recorded in real clinical settings. In this paper, we propose a patient-level severity estimation method by a transformer with selective aggregator tokens, where a severity label is estimated from multiple images taken from a patient, similar to a clinical setting. Our method can effectively aggregate features of severe parts from a set of images captured in each patient, and it facilitates improving the discriminative ability between adjacent severity classes. Experiments demonstrate the effectiveness of the proposed method on two datasets compared with the state-of-the-art MIL methods. Moreover, we evaluated our method in real clinical settings and confirmed that our method outperformed the previous image-level methods. The code is publicly available at https://github.com/Shiku-Kaito/Ordinal-Multiple-instance-Learning-for-Ulcerative-Colitis-Severity-Es timation.
Related papers
- Ulcerative Colitis Mayo Endoscopic Scoring Classification with Active
Learning and Generative Data Augmentation [2.5241576779308335]
Deep learning based methods are effective in automated analysis of these images and can potentially be used to aid medical doctors.
In this paper, we propose a active learning based generative augmentation method.
The method involves generating a large number of synthetic samples by training using a small dataset consisting of real endoscopic images.
arXiv Detail & Related papers (2023-11-10T13:42:21Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - SPLAL: Similarity-based pseudo-labeling with alignment loss for
semi-supervised medical image classification [11.435826510575879]
Semi-supervised learning (SSL) methods can mitigate challenges by leveraging both labeled and unlabeled data.
SSL methods for medical image classification need to address two key challenges: (1) estimating reliable pseudo-labels for the images in the unlabeled dataset and (2) reducing biases caused by class imbalance.
In this paper, we propose a novel SSL approach, SPLAL, that effectively addresses these challenges.
arXiv Detail & Related papers (2023-07-10T14:53:24Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Active learning for medical image segmentation with stochastic batches [13.171801108109198]
To reduce manual labelling, active learning (AL) targets the most informative samples from the unlabelled set to annotate and add to the labelled training set.
This work aims to take advantage of the diversity and speed offered by random sampling to improve the selection of uncertainty-based AL methods for segmenting medical images.
arXiv Detail & Related papers (2023-01-18T17:25:55Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin stained images of breast cancer.
Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets.
arXiv Detail & Related papers (2022-11-14T18:16:36Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Order-Guided Disentangled Representation Learning for Ulcerative Colitis
Classification with Limited Labels [8.302375673936387]
We propose a practical semi-supervised learning method for Ulcerative colitis (UC) classification.
The proposed method can extract the essential information of UC classification efficiently by a disentanglement process.
Experimental results demonstrate that the proposed method outperforms several existing semi-supervised learning methods in the classification task.
arXiv Detail & Related papers (2021-11-06T06:53:40Z) - Positional Contrastive Learning for Volumetric Medical Image
Segmentation [13.086140606803408]
We propose a novel positional contrastive learning framework to generate contrastive data pairs.
The proposed PCL method can substantially improve the segmentation performance compared to existing methods in both semi-supervised setting and transfer learning setting.
arXiv Detail & Related papers (2021-06-16T22:15:28Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.