DyCoke: Dynamic Compression of Tokens for Fast Video Large Language Models
- URL: http://arxiv.org/abs/2411.15024v1
- Date: Fri, 22 Nov 2024 15:55:19 GMT
- Title: DyCoke: Dynamic Compression of Tokens for Fast Video Large Language Models
- Authors: Keda Tao, Can Qin, Haoxuan You, Yang Sui, Huan Wang,
- Abstract summary: We present DyCoke, a training-free token compression method to optimize token representation and accelerate video large language models.
DyCoke incorporates a plug-and-play temporal compression module to minimize temporal redundancy by merging redundant tokens across frames.
It ensures high-quality inference by dynamically retaining the critical tokens at each decoding step.
- Score: 28.379533608574814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video large language models (VLLMs) have significantly advanced recently in processing complex video content, yet their inference efficiency remains constrained because of the high computational cost stemming from the thousands of visual tokens generated from the video inputs. We empirically observe that, unlike single image inputs, VLLMs typically attend visual tokens from different frames at different decoding iterations, making a one-shot pruning strategy prone to removing important tokens by mistake. Motivated by this, we present DyCoke, a training-free token compression method to optimize token representation and accelerate VLLMs. DyCoke incorporates a plug-and-play temporal compression module to minimize temporal redundancy by merging redundant tokens across frames, and applies dynamic KV cache reduction to prune spatially redundant tokens selectively. It ensures high-quality inference by dynamically retaining the critical tokens at each decoding step. Extensive experimental results demonstrate that DyCoke can outperform the prior SoTA counterparts, achieving 1.5X inference speedup, 1.4X memory reduction against the baseline VLLM, while still improving the performance, with no training.
Related papers
- DyMU: Dynamic Merging and Virtual Unmerging for Efficient VLMs [124.52164183968145]
We present DyMU, an efficient, training-free framework that reduces the computational burden of vision-language models (VLMs)
Our approach comprises two key components. First, Dynamic Token Merging (DToMe) reduces the number of visual token embeddings by merging similar tokens based on image complexity.
Second, Virtual Token Unmerging (VTU) simulates the expected token sequence for large language models (LLMs) by efficiently reconstructing the attention dynamics of a full sequence.
arXiv Detail & Related papers (2025-04-23T18:38:18Z) - VideoScan: Enabling Efficient Streaming Video Understanding via Frame-level Semantic Carriers [23.541896057977745]
VideoScan is an efficient vision-language model (VLM) inference framework for real-time video interaction.
VideoScan employs a single semantic carrier token to represent each frame.
arXiv Detail & Related papers (2025-03-12T13:30:40Z) - Token-Efficient Long Video Understanding for Multimodal LLMs [101.70681093383365]
STORM is a novel architecture incorporating a dedicated temporal encoder between the image encoder and the Video-LLMs.
We show that STORM achieves state-of-the-art results across various long video understanding benchmarks.
arXiv Detail & Related papers (2025-03-06T06:17:38Z) - ReTaKe: Reducing Temporal and Knowledge Redundancy for Long Video Understanding [55.320254859515714]
ReTaKe enables VideoLLMs to process 8 times longer frames (up to 2048), similar-sized models by 3-5% and even rivaling much larger ones on VideoMME, MLVU, LongVideoBench, and LVBench.
Our code is available at https://github.com/SCZwangxiao/video-ReTaKe.
arXiv Detail & Related papers (2024-12-29T15:42:24Z) - PVC: Progressive Visual Token Compression for Unified Image and Video Processing in Large Vision-Language Models [64.9366388601049]
Visual token compression is leveraged to reduce the considerable token length of visual inputs.
We introduce a unified token compression strategy called Progressive Visual Token Compression.
Our model achieves state-of-the-art performance across various video understanding benchmarks.
arXiv Detail & Related papers (2024-12-12T18:59:40Z) - Inference Optimal VLMs Need Only One Visual Token but Larger Models [54.01228554126122]
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks.
VLMs are often constrained by high latency during inference due to substantial compute required to process the large number of input tokens.
We take some initial steps towards building approaches tailored for high token compression settings.
arXiv Detail & Related papers (2024-11-05T18:54:21Z) - VL-Cache: Sparsity and Modality-Aware KV Cache Compression for Vision-Language Model Inference Acceleration [7.463830743649754]
Vision-Language Models (VLMs) have demonstrated impressive performance across a versatile set of tasks.
Key-Value (KV) cache encodes long visual contexts, such as images or videos.
Existing KV cache compression methods are effective for Large Language Models (LLMs)
We propose a novel KV cache compression recipe tailored for accelerating VLM inference.
arXiv Detail & Related papers (2024-10-29T20:04:34Z) - SparseTem: Boosting the Efficiency of CNN-Based Video Encoders by Exploiting Temporal Continuity [15.872209884833977]
We propose a memory-efficient scheduling method to eliminate memory overhead and an online adjustment mechanism to minimize accuracy degradation.
SparseTem achieves speedup of 1.79x for EfficientDet and 4.72x for CRNN, with minimal accuracy drop and no additional memory overhead.
arXiv Detail & Related papers (2024-10-28T07:13:25Z) - High-Efficiency Neural Video Compression via Hierarchical Predictive Learning [27.41398149573729]
Enhanced Deep Hierarchical Video Compression-DHVC 2.0- introduces superior compression performance and impressive complexity efficiency.
Uses hierarchical predictive coding to transform each video frame into multiscale representations.
Supports transmission-friendly progressive decoding, making it particularly advantageous for networked video applications in the presence of packet loss.
arXiv Detail & Related papers (2024-10-03T15:40:58Z) - Accelerating Learned Video Compression via Low-Resolution Representation Learning [18.399027308582596]
We introduce an efficiency-optimized framework for learned video compression that focuses on low-resolution representation learning.
Our method achieves performance levels on par with the low-decay P configuration of the H.266 reference software VTM.
arXiv Detail & Related papers (2024-07-23T12:02:57Z) - VoCo-LLaMA: Towards Vision Compression with Large Language Models [56.20788367278211]
Vision-Language Models (VLMs) have achieved remarkable success in various multi-modal tasks, but they are often bottlenecked by the limited context window.
We propose VoCo-LLaMA, the first approach to compress vision tokens using LLMs.
Our method achieves minimal performance loss with a compression ratio of 576$times$, resulting in up to 94.8$%$ fewer FLOPs and 69.6$%$ acceleration in inference time.
arXiv Detail & Related papers (2024-06-18T05:05:12Z) - ConvLLaVA: Hierarchical Backbones as Visual Encoder for Large Multimodal Models [77.59651787115546]
High-resolution Large Multimodal Models (LMMs) encounter the challenges of excessive visual tokens and quadratic visual complexity.
We propose ConvLLaVA, which employs ConvNeXt, a hierarchical backbone, as the visual encoder of LMM.
ConvLLaVA compresses high-resolution images into information-rich visual features, effectively preventing the generation of excessive visual tokens.
arXiv Detail & Related papers (2024-05-24T17:34:15Z) - CenterCLIP: Token Clustering for Efficient Text-Video Retrieval [67.21528544724546]
In CLIP, the essential visual tokenization process, which produces discrete visual token sequences, generates many homogeneous tokens due to the redundancy nature of consecutive frames in videos.
This significantly increases computation costs and hinders the deployment of video retrieval models in web applications.
In this paper, we design a multi-segment token clustering algorithm to find the most representative tokens and drop the non-essential ones.
arXiv Detail & Related papers (2022-05-02T12:02:09Z) - Conditional Entropy Coding for Efficient Video Compression [82.35389813794372]
We propose a very simple and efficient video compression framework that only focuses on modeling the conditional entropy between frames.
We first show that a simple architecture modeling the entropy between the image latent codes is as competitive as other neural video compression works and video codecs.
We then propose a novel internal learning extension on top of this architecture that brings an additional 10% savings without trading off decoding speed.
arXiv Detail & Related papers (2020-08-20T20:01:59Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
We propose a content adaptive and error propagation aware video compression system.
Our method employs a joint training strategy by considering the compression performance of multiple consecutive frames instead of a single frame.
Instead of using the hand-crafted coding modes in the traditional compression systems, we design an online encoder updating scheme in our system.
arXiv Detail & Related papers (2020-03-25T09:04:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.