Accelerating CALPHAD-based Phase Diagram Predictions in Complex Alloys Using Universal Machine Learning Potentials: Opportunities and Challenges
- URL: http://arxiv.org/abs/2411.15351v1
- Date: Fri, 22 Nov 2024 21:24:13 GMT
- Title: Accelerating CALPHAD-based Phase Diagram Predictions in Complex Alloys Using Universal Machine Learning Potentials: Opportunities and Challenges
- Authors: Siya Zhu, Raymundo Arróyave, Doğuhan Sarıtürk,
- Abstract summary: This work explores the use of machine learning interatomic potentials (MLIPs) to significantly accelerate phase diagram calculations.
Using case studies including Cr-Mo, Cu-Au, and Pt-W, we demonstrate that MLIPs, particularly ORB, achieve computational speedups exceeding three orders of magnitude compared to DFT.
- Score: 0.36868085124383626
- License:
- Abstract: Accurate phase diagram prediction is crucial for understanding alloy thermodynamics and advancing materials design. While traditional CALPHAD methods are robust, they are resource-intensive and limited by experimentally assessed data. This work explores the use of machine learning interatomic potentials (MLIPs) such as M3GNet, CHGNet, MACE, SevenNet, and ORB to significantly accelerate phase diagram calculations by using the Alloy Theoretic Automated Toolkit (ATAT) to map calculations of the energies and free energies of atomistic systems to CALPHAD-compatible thermodynamic descriptions. Using case studies including Cr-Mo, Cu-Au, and Pt-W, we demonstrate that MLIPs, particularly ORB, achieve computational speedups exceeding three orders of magnitude compared to DFT while maintaining phase stability predictions within acceptable accuracy. Extending this approach to liquid phases and ternary systems like Cr-Mo-V highlights its versatility for high-entropy alloys and complex chemical spaces. This work demonstrates that MLIPs, integrated with tools like ATAT within a CALPHAD framework, provide an efficient and accurate framework for high-throughput thermodynamic modeling, enabling rapid exploration of novel alloy systems. While many challenges remain to be addressed, the accuracy of some of these MLIPs (ORB in particular) are on the verge of paving the way toward high-throughput generation of CALPHAD thermodynamic descriptions of multi-component, multi-phase alloy systems.
Related papers
- Accelerating the discovery of low-energy structure configurations: a computational approach that integrates first-principles calculations, Monte Carlo sampling, and Machine Learning [8.695927973994577]
We develop a physics-based data-driven approach that combines Monte Carlo sampling, first-principles DFT calculations, and Machine Learning.
We demonstrate the capabilities of the proposed approach for the particular case of a tungsten-based quaternary high-entropy alloy.
arXiv Detail & Related papers (2024-10-08T01:34:42Z) - PointMT: Efficient Point Cloud Analysis with Hybrid MLP-Transformer Architecture [46.266960248570086]
This study tackles the quadratic complexity of the self-attention mechanism by introducing a complexity local attention mechanism for effective feature aggregation.
We also introduce a parameter-free channel temperature adaptation mechanism that adaptively adjusts the attention weight distribution in each channel.
We show that PointMT achieves performance comparable to state-of-the-art methods while maintaining an optimal balance between performance and accuracy.
arXiv Detail & Related papers (2024-08-10T10:16:03Z) - Efficient Materials Informatics between Rockets and Electrons [0.0]
This dissertation focuses on the design of functionally graded materials (FGMs) incorporating ultra-high temperature refractory high entropy alloys (RHEAs)
At the atomistic level, a data ecosystem optimized for machine learning (ML) from over 4.5 million relaxed structures, called MPDD, is used to inform experimental observations and improve thermodynamic models.
The resulting multi-level discovery infrastructure is highly generalizable as it focuses on encoding problems to solve them easily rather than looking for an existing solution.
arXiv Detail & Related papers (2024-07-05T17:03:26Z) - Interpolation and differentiation of alchemical degrees of freedom in machine learning interatomic potentials [1.1016723046079784]
We report the use of continuous and differentiable alchemical degrees of freedom in atomistic materials simulations.
The proposed method introduces alchemical atoms with corresponding weights into the input graph, alongside modifications to the message-passing and readout mechanisms of MLIPs.
The end-to-end differentiability of MLIPs enables efficient calculation of the gradient of energy with respect to the compositional weights.
arXiv Detail & Related papers (2024-04-16T17:24:22Z) - A conditional latent autoregressive recurrent model for generation and forecasting of beam dynamics in particle accelerators [46.348283638884425]
We propose a two-step unsupervised deep learning framework named as Latent Autoregressive Recurrent Model (CLARM) for learning dynamics of charged particles in accelerators.
The CLARM can generate projections at various accelerator sampling modules by capturing and decoding the latent space representation.
The results demonstrate that the generative and forecasting ability of the proposed approach is promising when tested against a variety of evaluation metrics.
arXiv Detail & Related papers (2024-03-19T22:05:17Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Low-cost machine learning approach to the prediction of transition metal
phosphor excited state properties [0.4306143768014156]
Photoactive iridium complexes are of broad interest due to their applications ranging from lighting to photocatalysis.
We leverage low-cost machine learning (ML) models to predict the excited state properties of iridium complexes.
arXiv Detail & Related papers (2022-09-18T16:24:07Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted
Atomic-Orbital Features [42.96944345045462]
textscOrbNet is shown to outperform existing methods in terms of learning efficiency and transferability.
For applications to datasets of drug-like molecules, textscOrbNet predicts energies within chemical accuracy of DFT at a computational cost that is thousand-fold or more reduced.
arXiv Detail & Related papers (2020-07-15T22:38:41Z) - Automated discovery of a robust interatomic potential for aluminum [4.6028828826414925]
Machine learning (ML) based potentials aim for faithful emulation of quantum mechanics (QM) calculations at drastically reduced computational cost.
We present a highly automated approach to dataset construction using the principles of active learning (AL)
We demonstrate this approach by building an ML potential for aluminum (ANI-Al)
To demonstrate transferability, we perform a 1.3M atom shock simulation, and show that ANI-Al predictions agree very well with DFT calculations on local atomic environments sampled from the nonequilibrium dynamics.
arXiv Detail & Related papers (2020-03-10T19:06:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.