論文の概要: On the importance of local and global feature learning for automated measurable residual disease detection in flow cytometry data
- arxiv url: http://arxiv.org/abs/2411.15621v1
- Date: Sat, 23 Nov 2024 18:15:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:21:04.397570
- Title: On the importance of local and global feature learning for automated measurable residual disease detection in flow cytometry data
- Title(参考訳): フローサイトメトリーデータにおける局所的・大域的特徴学習の重要性について
- Authors: Lisa Weijler, Michael Reiter, Pedro Hermosilla, Margarita Maurer-Granofszky, Michael Dworzak,
- Abstract要約: 本稿では,フロー(FCM)データにおけるMRD検出のための様々な深層学習手法について検討する。
本稿では,現在最先端(SOTA)モデルへの2つの適応を提案する。
コントリビューションには、SOTAモデルの拡張、公開データセットのパフォーマンス向上、実験室間の一般化の改善などが含まれています。
- 参考スコア(独自算出の注目度): 4.550634499956126
- License:
- Abstract: This paper evaluates various deep learning methods for measurable residual disease (MRD) detection in flow cytometry (FCM) data, addressing questions regarding the benefits of modeling long-range dependencies, methods of obtaining global information, and the importance of learning local features. Based on our findings, we propose two adaptations to the current state-of-the-art (SOTA) model. Our contributions include an enhanced SOTA model, demonstrating superior performance on publicly available datasets and improved generalization across laboratories, as well as valuable insights for the FCM community, guiding future DL architecture designs for FCM data analysis. The code is available at \url{https://github.com/lisaweijler/flowNetworks}.
- Abstract(参考訳): 本稿では,フローサイトメトリー(FCM)データにおけるMRD検出のための様々な深層学習手法について検討し,長距離依存性モデリングのメリット,グローバル情報取得の方法,局所的特徴の学習の重要性について考察する。
本研究は, 現状技術(SOTA)モデルに対する2つの適応法を提案する。
我々のコントリビューションには、SOTAモデルの拡張、公開データセットの優れたパフォーマンスの証明、実験室間の一般化の改善、FCMコミュニティにとっての貴重な洞察、FCMデータ分析のための将来のDLアーキテクチャ設計の指針などが含まれます。
コードは \url{https://github.com/lisaweijler/flowNetworks} で公開されている。
関連論文リスト
- Clinical Validation of a Real-Time Machine Learning-based System for the Detection of Acute Myeloid Leukemia by Flow Cytometry [0.0]
フロー内の機械学習(ML)モデルは、エラー率を低減し、効率を向上し、臨床実験室の効率を向上する可能性がある。
このようなモデルの臨床的展開についてはほとんど研究されていない。
急性骨髄性白血病(AML)の検出のためのMLモデルと臨床実装を支えるインフラについて述べる。
論文 参考訳(メタデータ) (2024-09-17T16:53:47Z) - Prospector Heads: Generalized Feature Attribution for Large Models & Data [82.02696069543454]
本稿では,説明に基づく帰属手法の効率的かつ解釈可能な代替手段であるプロスペクタヘッドを紹介する。
入力データにおけるクラス固有のパターンの解釈と発見を、プロファイラヘッドがいかに改善できるかを実証する。
論文 参考訳(メタデータ) (2024-02-18T23:01:28Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
本稿では、MIMIC-IVデータセットを用いて、滞在時間を予測するXGBoostバイナリ分類モデルにおける公平性とバイアスについて検討する。
この研究は、人口統計属性にわたるデータセットのクラス不均衡を明らかにし、データ前処理と特徴抽出を採用する。
この論文は、偏見を緩和するための公正な機械学習技術と、医療専門家とデータサイエンティストの協力的な努力の必要性について結論付けている。
論文 参考訳(メタデータ) (2023-12-31T16:01:48Z) - A Generative Self-Supervised Framework using Functional Connectivity in
fMRI Data [15.211387244155725]
機能的磁気共鳴イメージング(fMRI)データから抽出した機能的接続性(FC)ネットワークを訓練したディープニューラルネットワークが人気を博している。
グラフニューラルネットワーク(GNN)のFCへの適用に関する最近の研究は、FCの時間変化特性を活用することにより、モデル予測の精度と解釈可能性を大幅に向上させることができることを示唆している。
高品質なfMRIデータとそれに対応するラベルを取得するための高コストは、実環境において彼らのアプリケーションにハードルをもたらす。
本研究では,動的FC内の時間情報を効果的に活用するためのSSL生成手法を提案する。
論文 参考訳(メタデータ) (2023-12-04T16:14:43Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
本稿では,物理にヒントを得たハイブリットアテンション(PIHA)機構と,この問題に対処するためのOFA評価プロトコルを提案する。
PIHAは、物理的情報の高レベルなセマンティクスを活用して、ターゲットの局所的なセマンティクスを認識した特徴群を活性化し、誘導する。
提案手法は,ASCパラメータが同じ12のテストシナリオにおいて,他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-09-27T14:39:41Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Neural FIM for learning Fisher Information Metrics from point cloud data [71.07939200676199]
我々は、ポイントクラウドデータからフィッシャー情報量(FIM)を計算するためのニューラルFIMを提案する。
本稿では,PHATE可視化手法のパラメータの選択と,IPSCリプログラミングとPBMC(免疫細胞)の2つの単一セルデータセットと,おもちゃデータセットの分岐点とクラスタセンターの埋め込みに関する情報を得る能力について述べる。
論文 参考訳(メタデータ) (2023-06-01T17:36:13Z) - Representation Learning with Information Theory for COVID-19 Detection [18.98329701403629]
我々は、データから有用な先行情報を発見し、本質的な特性を学習する際、深層モデルにどのように役立つかを示す。
我々のモデルはデュアルロールネットワーク (DRN) と呼ばれ、Last Squared Mutual Information (LSMI) に基づく依存性アプローチを採用している。
CTによるCOVID-19検出とCOVID-19重症度検出のベンチマーク実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2022-07-04T14:25:12Z) - Reinforcement Learning with Heterogeneous Data: Estimation and Inference [84.72174994749305]
人口の不均一性に関する逐次的決定問題に対処するために,K-ヘテロ・マルコフ決定過程(K-ヘテロ・MDP)を導入する。
本稿では、ある政策の価値を推定するための自己クラスタ化政策評価(ACPE)と、ある政策クラスにおける最適な政策を推定するための自己クラスタ化政策イテレーション(ACPI)を提案する。
理論的な知見を裏付けるシミュレーションを行い,MIMIC-III標準データセットの実証的研究を行った。
論文 参考訳(メタデータ) (2022-01-31T20:58:47Z) - Transfer learning to improve streamflow forecasts in data sparse regions [0.0]
本研究では,データスパース領域におけるストリームフロー予測の一般化性能向上のために,微調整およびパラメータ転送による伝達学習(TL)の方法論について検討する。
本稿では,Long Short-Term Memory(LSTM)という形式で,十分に大きなソースドメインデータセットに適合する標準のリカレントニューラルネットワークを提案する。
本稿では,モデルの空間的および時間的成分を分離し,モデルを一般化する訓練を行うことにより,水文学応用のための伝達学習手法を実装する手法を提案する。
論文 参考訳(メタデータ) (2021-12-06T14:52:53Z) - Encoding Domain Information with Sparse Priors for Inferring Explainable
Latent Variables [2.8935588665357077]
説明可能な因子の推論を促進するために,スパース先行の因子潜在変数モデルであるspex-LVMを提案する。
spex-LVMは、既存の生物医療経路の知識を利用して、潜在因子にアノテート属性を自動的に割り当てる。
シミュレーションおよび実シングルセルRNA-seqデータセットの評価は、本モデルが本質的に説明可能な方法で関連構造を頑健に識別することを示す。
論文 参考訳(メタデータ) (2021-07-08T10:19:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。