DrugAgent: Automating AI-aided Drug Discovery Programming through LLM Multi-Agent Collaboration
- URL: http://arxiv.org/abs/2411.15692v1
- Date: Sun, 24 Nov 2024 03:06:59 GMT
- Title: DrugAgent: Automating AI-aided Drug Discovery Programming through LLM Multi-Agent Collaboration
- Authors: Sizhe Liu, Yizhou Lu, Siyu Chen, Xiyang Hu, Jieyu Zhao, Tianfan Fu, Yue Zhao,
- Abstract summary: We introduce DrugAgent, a multi-agent framework aimed at automating machine learning (ML) programming in drug discovery.
DrugAgent incorporates domain expertise by identifying specific requirements and building domain-specific tools, while systematically exploring different ideas to find effective solutions.
For example, DrugAgent is able to complete the ML programming pipeline end-to-end, from data acquisition to performance evaluation for the ADMET prediction task, and finally select the best model.
- Score: 31.892593155710625
- License:
- Abstract: Recent advancements in Large Language Models (LLMs) have opened new avenues for accelerating drug discovery processes. Despite their potential, several critical challenges remain unsolved, particularly in translating theoretical ideas into practical applications within the highly specialized field of pharmaceutical research, limiting practitioners from leveraging the latest AI development in drug discovery. To this end, we introduce DrugAgent, a multi-agent framework aimed at automating machine learning (ML) programming in drug discovery. DrugAgent incorporates domain expertise by identifying specific requirements and building domain-specific tools, while systematically exploring different ideas to find effective solutions. A preliminary case study demonstrates DrugAgent's potential to overcome key limitations LLMs face in drug discovery, moving toward AI-driven innovation. For example, DrugAgent is able to complete the ML programming pipeline end-to-end, from data acquisition to performance evaluation for the ADMET prediction task, and finally select the best model, where the random forest model achieves an F1 score of 0.92 when predicting absorption using the PAMPA dataset.
Related papers
- Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance [95.03771007780976]
We tackle the challenge of developing proactive agents capable of anticipating and initiating tasks without explicit human instructions.
First, we collect real-world human activities to generate proactive task predictions.
These predictions are labeled by human annotators as either accepted or rejected.
The labeled data is used to train a reward model that simulates human judgment.
arXiv Detail & Related papers (2024-10-16T08:24:09Z) - Y-Mol: A Multiscale Biomedical Knowledge-Guided Large Language Model for Drug Development [24.5979645373074]
Y-Mol is a knowledge-guided LLM designed to accomplish tasks across lead compound discovery, pre-clinic, and clinic prediction.
It learns from a corpus of publications, knowledge graphs, and expert-designed synthetic data.
Y-Mol significantly outperforms general-purpose LLMs in discovering lead compounds, predicting molecular properties, and identifying drug interaction events.
arXiv Detail & Related papers (2024-10-15T12:39:20Z) - Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
The integration of Large Language Models (LLMs) into the drug discovery and development field marks a significant paradigm shift.
We investigate how these advanced computational models can uncover target-disease linkage, interpret complex biomedical data, enhance drug molecule design, predict drug efficacy and safety profiles, and facilitate clinical trial processes.
arXiv Detail & Related papers (2024-09-06T02:03:38Z) - DrugAgent: Explainable Drug Repurposing Agent with Large Language Model-based Reasoning [10.528489471229946]
We propose a multi-agent framework to enhance the drug repurposing process using state-of-the-art machine learning techniques and knowledge integration.
Our framework comprises several specialized agents: an AI Agent trains robust drug-target interaction (DTI) models; a Knowledge Graph Agent utilizes the drug-gene interaction database (DGIdb) to systematically extract DTIs.
By integrating outputs from these agents, our system effectively harnesses diverse data sources, including external databases, to propose viable repurposing candidates.
arXiv Detail & Related papers (2024-08-23T21:24:59Z) - Towards Evolutionary-based Automated Machine Learning for Small Molecule Pharmacokinetic Prediction [0.0]
Small molecule properties are crucial in the early stages of drug development.
Existing methods lack personalisation and rely on manually crafted ML algorithms or pipelines.
We propose a novel evolutionary-based automated ML method (AutoML) specifically designed for predicting small molecule properties.
arXiv Detail & Related papers (2024-08-01T09:46:06Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
A major challenge for AI-driven drug discovery is the scarcity of high-quality data.
We develop a formula enhanced mul-ti-task learning (PEMAL) method that predicts four key parameters of pharmacokinetics simultaneously.
Our experiments reveal that PEMAL significantly lowers the data demand, compared to typical Graph Neural Networks.
arXiv Detail & Related papers (2024-04-16T07:42:55Z) - DrugAssist: A Large Language Model for Molecule Optimization [29.95488215594247]
DrugAssist is an interactive molecule optimization model that performs optimization through human-machine dialogue.
DrugAssist has achieved leading results in both single and multiple property optimization.
We publicly release a large instruction-based dataset called MolOpt-Instructions for fine-tuning language models on molecule optimization tasks.
arXiv Detail & Related papers (2023-12-28T10:46:56Z) - ImDrug: A Benchmark for Deep Imbalanced Learning in AI-aided Drug
Discovery [79.08833067391093]
Real-world pharmaceutical datasets often exhibit highly imbalanced distribution.
We introduce ImDrug, a benchmark with an open-source Python library which consists of 4 imbalance settings, 11 AI-ready datasets, 54 learning tasks and 16 baseline algorithms tailored for imbalanced learning.
It provides an accessible and customizable testbed for problems and solutions spanning a broad spectrum of the drug discovery pipeline.
arXiv Detail & Related papers (2022-09-16T13:35:57Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
Annotations [90.27736364704108]
We present DrugOOD, a systematic OOD dataset curator and benchmark for AI-aided drug discovery.
DrugOOD comes with an open-source Python package that fully automates benchmarking processes.
We focus on one of the most crucial problems in AIDD: drug target binding affinity prediction.
arXiv Detail & Related papers (2022-01-24T12:32:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.