LIDDIA: Language-based Intelligent Drug Discovery Agent
- URL: http://arxiv.org/abs/2502.13959v1
- Date: Wed, 19 Feb 2025 18:56:12 GMT
- Title: LIDDIA: Language-based Intelligent Drug Discovery Agent
- Authors: Reza Averly, Frazier N. Baker, Xia Ning,
- Abstract summary: LIDDiA is an autonomous agent capable of intelligently navigating the drug discovery process in silico.
It can generate molecules meeting key pharmaceutical criteria on over 70% of 30 clinically relevant targets.
It can identify promising novel drug candidates on EGFR, a critical target for cancers.
- Score: 0.5325390073522079
- License:
- Abstract: Drug discovery is a long, expensive, and complex process, relying heavily on human medicinal chemists, who can spend years searching the vast space of potential therapies. Recent advances in artificial intelligence for chemistry have sought to expedite individual drug discovery tasks; however, there remains a critical need for an intelligent agent that can navigate the drug discovery process. Towards this end, we introduce LIDDiA, an autonomous agent capable of intelligently navigating the drug discovery process in silico. By leveraging the reasoning capabilities of large language models, LIDDiA serves as a low-cost and highly-adaptable tool for autonomous drug discovery. We comprehensively examine LIDDiA, demonstrating that (1) it can generate molecules meeting key pharmaceutical criteria on over 70% of 30 clinically relevant targets, (2) it intelligently balances exploration and exploitation in the chemical space, and (3) it can identify promising novel drug candidates on EGFR, a critical target for cancers.
Related papers
- Small Molecule Drug Discovery Through Deep Learning:Progress, Challenges, and Opportunities [34.72068278499029]
With the rapid development of deep learning (DL) techniques, DL-based small molecule drug discovery methods have achieved excellent performance.
This paper systematically summarize and generalize the recent key tasks and representative techniques in DL-based small molecule drug discovery.
arXiv Detail & Related papers (2025-02-13T05:24:52Z) - Decoding Drug Discovery: Exploring A-to-Z In silico Methods for Beginners [4.08908337437878]
The main goal of this work is to review in silico methods used in the drug development process.
This article thoroughly discusses A-to-Z in silico techniques, which are essential for identifying the targets of bioactive compounds.
arXiv Detail & Related papers (2024-12-15T10:02:38Z) - Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
The integration of Large Language Models (LLMs) into the drug discovery and development field marks a significant paradigm shift.
We investigate how these advanced computational models can uncover target-disease linkage, interpret complex biomedical data, enhance drug molecule design, predict drug efficacy and safety profiles, and facilitate clinical trial processes.
arXiv Detail & Related papers (2024-09-06T02:03:38Z) - DrugAgent: Explainable Drug Repurposing Agent with Large Language Model-based Reasoning [10.528489471229946]
We propose a multi-agent framework to enhance the drug repurposing process using state-of-the-art machine learning techniques and knowledge integration.
Our framework comprises several specialized agents: an AI Agent trains robust drug-target interaction (DTI) models; a Knowledge Graph Agent utilizes the drug-gene interaction database (DGIdb) to systematically extract DTIs.
By integrating outputs from these agents, our system effectively harnesses diverse data sources, including external databases, to propose viable repurposing candidates.
arXiv Detail & Related papers (2024-08-23T21:24:59Z) - Emerging Opportunities of Using Large Language Models for Translation
Between Drug Molecules and Indications [6.832024637226738]
We propose a new task, which is the translation between drug molecules and corresponding indications.
The creation of molecules from indications, or vice versa, will allow for more efficient targeting of diseases.
arXiv Detail & Related papers (2024-02-14T21:33:13Z) - Artificial Intelligence for Drug Discovery: Are We There Yet? [0.08306867559432653]
Drug discovery is adapting to novel technologies such as data science, informatics, and artificial intelligence (AI) to accelerate effective treatment development.
This review discusses the use of AI in the three pillars of drug discovery: diseases, targets, and therapeutic modalities, with a focus on small molecule drugs.
arXiv Detail & Related papers (2023-07-13T01:51:26Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
We propose a novel setting and models for in-context drug synergy learning.
We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets.
Our goal is to predict additional drug synergy relationships in that context.
arXiv Detail & Related papers (2023-06-19T17:03:46Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Deep learning for drug repurposing: methods, databases, and applications [54.08583498324774]
Repurposing existing drugs for new therapies is an attractive solution that accelerates drug development at reduced experimental costs.
In this review, we introduce guidelines on how to utilize deep learning methodologies and tools for drug repurposing.
arXiv Detail & Related papers (2022-02-08T09:42:08Z) - Discovering Drug-Target Interaction Knowledge from Biomedical Literature [107.98712673387031]
The Interaction between Drugs and Targets (DTI) in human body plays a crucial role in biomedical science and applications.
As millions of papers come out every year in the biomedical domain, automatically discovering DTI knowledge from literature becomes an urgent demand in the industry.
We explore the first end-to-end solution for this task by using generative approaches.
We regard the DTI triplets as a sequence and use a Transformer-based model to directly generate them without using the detailed annotations of entities and relations.
arXiv Detail & Related papers (2021-09-27T17:00:14Z) - MolDesigner: Interactive Design of Efficacious Drugs with Deep Learning [61.74958429818077]
MolDesigner is a human-in-the-loop web user-interface (UI) for drug developers.
A developer can draw a drug molecule in the interface.
In the backend, more than 17 state-of-the-art DL models generate predictions on important indices that are crucial for a drug's efficacy.
arXiv Detail & Related papers (2020-10-05T21:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.