Integrating Deep Metric Learning with Coreset for Active Learning in 3D Segmentation
- URL: http://arxiv.org/abs/2411.15763v1
- Date: Sun, 24 Nov 2024 09:23:07 GMT
- Title: Integrating Deep Metric Learning with Coreset for Active Learning in 3D Segmentation
- Authors: Arvind Murari Vepa, Zukang Yang, Andrew Choi, Jungseock Joo, Fabien Scalzo, Yizhou Sun,
- Abstract summary: This paper introduces a novel metric learning method for Coreset to perform slice-based active learning in 3D medical segmentation.
We perform comprehensive evaluations using both weak and full annotations across four datasets.
- Score: 36.24328763901216
- License:
- Abstract: Deep learning has seen remarkable advancements in machine learning, yet it often demands extensive annotated data. Tasks like 3D semantic segmentation impose a substantial annotation burden, especially in domains like medicine, where expert annotations drive up the cost. Active learning (AL) holds great potential to alleviate this annotation burden in 3D medical segmentation. The majority of existing AL methods, however, are not tailored to the medical domain. While weakly-supervised methods have been explored to reduce annotation burden, the fusion of AL with weak supervision remains unexplored, despite its potential to significantly reduce annotation costs. Additionally, there is little focus on slice-based AL for 3D segmentation, which can also significantly reduce costs in comparison to conventional volume-based AL. This paper introduces a novel metric learning method for Coreset to perform slice-based active learning in 3D medical segmentation. By merging contrastive learning with inherent data groupings in medical imaging, we learn a metric that emphasizes the relevant differences in samples for training 3D medical segmentation models. We perform comprehensive evaluations using both weak and full annotations across four datasets (medical and non-medical). Our findings demonstrate that our approach surpasses existing active learning techniques on both weak and full annotations and obtains superior performance with low-annotation budgets which is crucial in medical imaging. Source code for this project is available in the supplementary materials and on GitHub: https://github.com/arvindmvepa/al-seg.
Related papers
- Bayesian Self-Training for Semi-Supervised 3D Segmentation [59.544558398992386]
3D segmentation is a core problem in computer vision.
densely labeling 3D point clouds to employ fully-supervised training remains too labor intensive and expensive.
Semi-supervised training provides a more practical alternative, where only a small set of labeled data is given, accompanied by a larger unlabeled set.
arXiv Detail & Related papers (2024-09-12T14:54:31Z) - Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3D medical image segmentation is a challenging task with crucial implications for disease diagnosis and treatment planning.
Recent advances in deep learning have significantly enhanced fully supervised medical image segmentation.
We propose a novel probabilistic-aware weakly supervised learning pipeline, specifically designed for 3D medical imaging.
arXiv Detail & Related papers (2024-03-05T00:46:53Z) - MedContext: Learning Contextual Cues for Efficient Volumetric Medical Segmentation [25.74088298769155]
We propose a universal training framework called MedContext for 3D medical segmentation.
Our approach effectively learns self supervised contextual cues jointly with the supervised voxel segmentation task.
The effectiveness of MedContext is validated across multiple 3D medical datasets and four state-of-the-art model architectures.
arXiv Detail & Related papers (2024-02-27T17:58:05Z) - PCDAL: A Perturbation Consistency-Driven Active Learning Approach for
Medical Image Segmentation and Classification [12.560273908522714]
Supervised learning deeply relies on large-scale annotated data, which is expensive, time-consuming, and impractical to acquire in medical imaging applications.
Active Learning (AL) methods have been widely applied in natural image classification tasks to reduce annotation costs.
We propose an AL-based method that can be simultaneously applied to 2D medical image classification, segmentation, and 3D medical image segmentation tasks.
arXiv Detail & Related papers (2023-06-29T13:11:46Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Towards Cross-modality Medical Image Segmentation with Online Mutual
Knowledge Distillation [71.89867233426597]
In this paper, we aim to exploit the prior knowledge learned from one modality to improve the segmentation performance on another modality.
We propose a novel Mutual Knowledge Distillation scheme to thoroughly exploit the modality-shared knowledge.
Experimental results on the public multi-class cardiac segmentation data, i.e., MMWHS 2017, show that our method achieves large improvements on CT segmentation.
arXiv Detail & Related papers (2020-10-04T10:25:13Z) - Confident Coreset for Active Learning in Medical Image Analysis [57.436224561482966]
We propose a novel active learning method, confident coreset, which considers both uncertainty and distribution for effectively selecting informative samples.
By comparative experiments on two medical image analysis tasks, we show that our method outperforms other active learning methods.
arXiv Detail & Related papers (2020-04-05T13:46:16Z) - Weak Supervision in Convolutional Neural Network for Semantic
Segmentation of Diffuse Lung Diseases Using Partially Annotated Dataset [2.239917051803692]
We develop semantic segmentation model for 5 kinds of lung diseases.
DLDs considered in this work are consolidation, ground glass opacity, honeycombing, emphysema, and normal.
We propose a new weak supervision technique that effectively utilizes partially annotated dataset.
arXiv Detail & Related papers (2020-02-27T06:17:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.