論文の概要: Peritumoral Expansion Radiomics for Improved Lung Cancer Classification
- arxiv url: http://arxiv.org/abs/2411.16008v1
- Date: Sun, 24 Nov 2024 23:04:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:19:01.533624
- Title: Peritumoral Expansion Radiomics for Improved Lung Cancer Classification
- Title(参考訳): 肺がん診断における経時的拡張放射線治療
- Authors: Fakrul Islam Tushar,
- Abstract要約: 本研究は, 結節の分節化とその周辺が放射線治療による肺癌の分類にどのように影響するかを検討した。
経時的領域の包含は性能を著しく向上させ, 最大で8mmの伸長が得られた。
放射線学的アプローチにより分類精度が向上した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Purpose: This study investigated how nodule segmentation and surrounding peritumoral regions influence radionics-based lung cancer classification. Methods: Using 3D CT scans with bounding box annotated nodules, we generated 3D segmentations using four techniques: Otsu, Fuzzy C-Means (FCM), Gaussian Mixture Model (GMM), and K-Nearest Neighbors (KNN). Radiomics features were extracted using the PyRadiomics library, and multiple machine-learning-based classifiers, including Random Forest, Logistic Regression, and KNN, were employed to classify nodules as cancerous or non-cancerous. The best-performing segmentation and model were further analyzed by expanding the initial nodule segmentation into the peritumoral region (2, 4, 6, 8, 10, and 12 mm) to understand the influence of the surrounding area on classification. Additionally, we compared our results to deep learning-based feature extractors Foundation Model for Cancer Biomarkers (FMCB) and other state-of-the-art baseline models. Results: Incorporating peritumoral regions significantly enhanced performance, with the best result obtained at 8 mm expansion (AUC = 0.78). Compared to image-based deep learning models, such as FMCB (AUC = 0.71) and ResNet50-SWS++ (AUC = 0.71), our radiomics-based approach demonstrated superior classification accuracy. Conclusion: The study highlights the importance of peritumoral expansion in improving lung cancer classification using radiomics. These findings can inform the development of more robust AI-driven diagnostic tools.
- Abstract(参考訳): 目的: 本研究は, 結節の分節と周辺部が放射線治療による肺がんの分類にどのように影響するかを検討した。
方法: 結節付き結節付き3次元CTスキャンを用いて, 大津, ファジィC平均(FCM), ガウス混合モデル(GMM), K-Nearest Neighbors(KNN)の4つの手法を用いて3次元セグメンテーションを作成した。
PyRadiomicsライブラリを用いて放射能の特徴を抽出し、ランダムフォレスト、ロジスティック回帰、KNNを含む複数の機械学習ベースの分類器を用いて、結節を癌性または非癌性と分類した。
初期結節分節を周縁部(2, 4, 6, 8, 10, 12 mm)に拡大することにより, 周辺地域の影響を把握し, 最良性能分節とモデルをさらに解析した。
さらに, 深層学習に基づく特徴抽出モデル (FMCB) や他の最先端のベースラインモデルと比較した。
結果: 縦隔領域を組み込むことで, 8mmの伸展(AUC=0.78)が得られた。
FMCB (AUC = 0.71) や ResNet50-SWS++ (AUC = 0.71) などの画像に基づくディープラーニングモデルと比較して, 放射能に基づくアプローチは, より優れた分類精度を示した。
結論: この研究は, 放射線学を用いた肺がん分類の改善における縦隔拡大の重要性を強調した。
これらの発見は、より堅牢なAI駆動診断ツールの開発に役立てることができる。
関連論文リスト
- Unraveling Radiomics Complexity: Strategies for Optimal Simplicity in Predictive Modeling [4.1032659987778315]
放射線的特徴セットの高次元性、放射線的特徴タイプの変動性、そして潜在的に高い計算要求は、全て、与えられた臨床問題に対する最小の予測的特徴セットを特定する効果的な方法の必要性を浮き彫りにしている。
我々は,最小限の放射線学的特徴を識別し,説明するための方法論とツールを開発する。
論文 参考訳(メタデータ) (2024-07-05T23:14:46Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Developing a Novel Image Marker to Predict the Clinical Outcome of Neoadjuvant Chemotherapy (NACT) for Ovarian Cancer Patients [1.7623658472574557]
ネオアジュバント化学療法(ネオアジュバントセラピー、Neoadjuvant chemotherapy, NACT)は、卵巣がんの進行期における治療法の一つ。
NACTに対する部分的反応は、近位部破裂手術を引き起こす可能性があり、予後不良を引き起こす。
我々は,NATの早期に高精度な予後予測を実現するために,新しい画像マーカーを開発した。
論文 参考訳(メタデータ) (2023-09-13T16:59:50Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
視覚変換器(ViT)の胸部X線撮影(CXR)分類性能と注意ベース唾液の解釈可能性について検討する。
ViTは、CheXpert、Chest X-Ray 14、MIMIC CXR、VinBigDataの4つの公開データセットを用いて、肺疾患分類のために微調整された。
ViTsは最先端のCNNと比べてCXR分類AUCに匹敵するものであった。
論文 参考訳(メタデータ) (2023-03-03T12:05:41Z) - Improving Deep Learning Models for Pediatric Low-Grade Glioma Tumors
Molecular Subtype Identification Using 3D Probability Distributions of Tumor
Location [0.0]
pLGGサブタイプ同定のためのCNNモデルは腫瘍セグメンテーションに依存している。
我々はMRIデータにおける腫瘍位置確率を用いてCNNモデルを拡張することを提案する。
腫瘍位置をCNNモデルに組み込むことにより,統計的に有意な改善が得られた。
論文 参考訳(メタデータ) (2022-10-13T18:30:11Z) - 3D-Morphomics, Morphological Features on CT scans for lung nodule
malignancy diagnosis [8.728543774561405]
本研究はCTボリュームにおける形態学的特徴(3次元形態学)に基づく病理状態の予測モデルを構築した。
その後、XGBoost教師付き分類器が3次元形態学で訓練され、病理状態を予測する。
肺結節の悪性度と良性度との分類モデルでは, 3D-morphomicsのみを用いて0.964のAUCが得られる。
論文 参考訳(メタデータ) (2022-07-27T23:50:47Z) - Improving Disease Classification Performance and Explainability of Deep
Learning Models in Radiology with Heatmap Generators [0.0]
3つの実験セットがU-Netアーキテクチャを用いて行われ、分類性能が向上した。
最大の改善点は「肺炎」クラスと「CHF」クラスであり、ベースラインモデルは分類に最も苦労した。
論文 参考訳(メタデータ) (2022-06-28T13:03:50Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation [44.02622933605018]
放射線モデルは、グリオ芽腫(GBM)の結果予測のための臨床データを上回ることが示されています。
GBM患者の生存率(OS),IDH変異,O-6-メチルグアニン-DNA-メチルトランスフェラーゼ(MGMT)プロモーターメチル化,EGFR(EGFR)VII増幅,Ki-67発現の9種類の機械学習分類器を比較した。
xgb は os (74.5%), ab for idh 変異 (88%), mgmt メチル化 (71,7%), ki-67 発現 (86,6%), egfr増幅 (81。
論文 参考訳(メタデータ) (2021-02-10T15:10:37Z) - Machine-Learning-Based Multiple Abnormality Prediction with Large-Scale
Chest Computed Tomography Volumes [64.21642241351857]
19,993症例から36,316巻の胸部CTデータセットを収集,解析した。
自由テキストラジオグラフィーレポートから異常ラベルを自動的に抽出するルールベース手法を開発した。
胸部CTボリュームの多臓器・多臓器分類モデルも開発した。
論文 参考訳(メタデータ) (2020-02-12T00:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。