論文の概要: The brain versus AI: World-model-based versatile circuit computation underlying diverse functions in the neocortex and cerebellum
- arxiv url: http://arxiv.org/abs/2411.16075v1
- Date: Mon, 25 Nov 2024 04:05:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:19:24.768168
- Title: The brain versus AI: World-model-based versatile circuit computation underlying diverse functions in the neocortex and cerebellum
- Title(参考訳): 脳対AI:大脳皮質と小脳の多様な機能に基づく世界モデルに基づく多目的回路計算
- Authors: Shogo Ohmae, Keiko Ohmae,
- Abstract要約: 脳とAIの類似点と収束進化を同定する。
確立した神経科学理論を統合する新しい理論を提案する。
私たちの体系的なアプローチ、洞察、理論は、脳を理解するための画期的な進歩を約束します。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: AI's significant recent advances using general-purpose circuit computations offer a potential window into how the neocortex and cerebellum of the brain are able to achieve a diverse range of functions across sensory, cognitive, and motor domains, despite their uniform circuit structures. However, comparing the brain and AI is challenging unless clear similarities exist, and past reviews have been limited to comparison of brain-inspired vision AI and the visual neocortex. Here, to enable comparisons across diverse functional domains, we subdivide circuit computation into three elements -- circuit structure, input/outputs, and the learning algorithm -- and evaluate the similarities for each element. With this novel approach, we identify wide-ranging similarities and convergent evolution in the brain and AI, providing new insights into key concepts in neuroscience. Furthermore, inspired by processing mechanisms of AI, we propose a new theory that integrates established neuroscience theories, particularly the theories of internal models and the mirror neuron system. Both the neocortex and cerebellum predict future world events from past information and learn from prediction errors, thereby acquiring models of the world. These models enable three core processes: (1) Prediction -- generating future information, (2) Understanding -- interpreting the external world via compressed and abstracted sensory information, and (3) Generation -- repurposing the future-information generation mechanism to produce other types of outputs. The universal application of these processes underlies the ability of the neocortex and cerebellum to accomplish diverse functions with uniform circuits. Our systematic approach, insights, and theory promise groundbreaking advances in understanding the brain.
- Abstract(参考訳): 汎用回路計算を用いたAIの最近の顕著な進歩は、その均一な回路構造にもかかわらず、脳の新皮質と小脳が、感覚、認知、運動の各領域にまたがる様々な機能を実現するための潜在的な窓を提供する。
しかし、明確な類似点がない限り、脳とAIの比較は困難であり、過去のレビューは脳にインスパイアされた視覚AIと視覚新皮質の比較に限られている。
そこで,回路計算を回路構造,入出力,学習アルゴリズムの3つの要素に分割し,各要素の類似性を評価する。
この新しいアプローチでは、脳とAIの幅広い類似性と収束進化を特定し、神経科学における重要な概念に関する新たな洞察を提供する。
さらに、AIの処理機構に触発されて、確立された神経科学理論、特に内部モデルの理論とミラーニューロンシステムを統合する新しい理論を提案する。
新皮質と小脳の両方が過去の情報から未来の世界イベントを予測し、予測エラーから学習し、世界のモデルを取得する。
これらのモデルは、(1)予測 -- 将来の情報を生成すること、(2)理解 -- 圧縮され抽象された感覚情報を通じて外部世界を解釈すること、(3)生成 -- 他のタイプの出力を生成するために、将来の情報生成メカニズムを再調達すること、の3つのコアプロセスを可能にする。
これらのプロセスの普遍的な応用は、一様回路で様々な機能を達成するために、新皮質と小脳の能力の基盤となる。
私たちの体系的なアプローチ、洞察、理論は、脳を理解するための画期的な進歩を約束します。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Towards Reverse-Engineering the Brain: Brain-Derived Neuromorphic Computing Approach with Photonic, Electronic, and Ionic Dynamicity in 3D integrated circuits [2.649646793770068]
人間の脳は、極度のエネルギー効率とスケールで膨大な学習能力を持ち、人工システムは一致していない。
本稿では,脳由来ニューロモルフィックコンピューティングシステムのプロトタイプを設計することで,脳のリバースエンジニアリングの可能性について議論する。
論文 参考訳(メタデータ) (2024-03-28T05:24:04Z) - A Review of Findings from Neuroscience and Cognitive Psychology as
Possible Inspiration for the Path to Artificial General Intelligence [0.0]
本論は,神経科学と認知心理学の手法を検討することによって,人工知能の探求に貢献することを目的とする。
深層学習モデルによって達成された印象的な進歩にもかかわらず、抽象的推論と因果的理解にはまだ欠点がある。
論文 参考訳(メタデータ) (2024-01-03T09:46:36Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
フォン・ノイマンアーキテクチャと古典的ニューラルネットワークに基づく現代のAIシステムは、脳と比較して多くの基本的な制限がある。
この記事では、そのような制限と、それらが緩和される方法について論じる。
これは、これらの制限が克服されている現在利用可能なニューロモーフィックAIプロジェクトの概要を示す。
論文 参考訳(メタデータ) (2022-05-25T20:16:05Z) - Neurocompositional computing: From the Central Paradox of Cognition to a
new generation of AI systems [120.297940190903]
AIの最近の進歩は、限られた形態のニューロコンフォメーションコンピューティングの使用によってもたらされている。
ニューロコンポジションコンピューティングの新しい形式は、より堅牢で正確で理解しやすいAIシステムを生み出します。
論文 参考訳(メタデータ) (2022-05-02T18:00:10Z) - Spatiotemporal Patterns in Neurobiology: An Overview for Future
Artificial Intelligence [0.0]
我々は,ネットワーク相互作用から生じる機能を明らかにする上で,計算モデルが重要なツールであると主張している。
ここでは、スパイキングニューロン、統合ニューロン、発火ニューロンを含むいくつかのモデルのクラスについてレビューする。
これらの研究は、人工知能アルゴリズムの今後の発展と、脳のプロセスの理解の検証に役立つことを願っている。
論文 参考訳(メタデータ) (2022-03-29T10:28:01Z) - Towards Understanding Human Functional Brain Development with
Explainable Artificial Intelligence: Challenges and Perspectives [6.106661781836959]
本稿では,現在最先端のAI技術が機能的脳発達にどのような影響を及ぼすかを理解することを目的とする。
また、脳の発達過程に基づいて、どのAI技術が彼らの学習を説明する可能性が高いかについてのレビューも実施されている。
論文 参考訳(メタデータ) (2021-12-24T02:13:13Z) - A brain basis of dynamical intelligence for AI and computational
neuroscience [0.0]
より多くの脳のような能力は、新しい理論、モデル、および人工学習システムを設計する方法を要求するかもしれない。
本稿は,第6回US/NIH BRAIN Initiative Investigators Meetingにおける動的神経科学と機械学習に関するシンポジウムに触発されたものです。
論文 参考訳(メタデータ) (2021-05-15T19:49:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。