Graph Transformer Networks for Accurate Band Structure Prediction: An End-to-End Approach
- URL: http://arxiv.org/abs/2411.16483v1
- Date: Mon, 25 Nov 2024 15:22:03 GMT
- Title: Graph Transformer Networks for Accurate Band Structure Prediction: An End-to-End Approach
- Authors: Weiyi Gong, Tao Sun, Hexin Bai, Jeng-Yuan Tsai, Haibin Ling, Qimin Yan,
- Abstract summary: We introduce a graph Transformer-based end-to-end approach that directly predicts band structures from crystal structures with high accuracy.
We demonstrate that our model not only provides accurate band structure predictions but also can derive other properties (such as band gap, band center, and band dispersion) with high accuracy.
- Score: 43.03250031130452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting electronic band structures from crystal structures is crucial for understanding structure-property correlations in materials science. First-principles approaches are accurate but computationally intensive. Recent years, machine learning (ML) has been extensively applied to this field, while existing ML models predominantly focus on band gap predictions or indirect band structure estimation via solving predicted Hamiltonians. An end-to-end model to predict band structure accurately and efficiently is still lacking. Here, we introduce a graph Transformer-based end-to-end approach that directly predicts band structures from crystal structures with high accuracy. Our method leverages the continuity of the k-path and treat continuous bands as a sequence. We demonstrate that our model not only provides accurate band structure predictions but also can derive other properties (such as band gap, band center, and band dispersion) with high accuracy. We verify the model performance on large and diverse datasets.
Related papers
- Estimating Interventional Distributions with Uncertain Causal Graphs through Meta-Learning [26.3914014514629]
In scientific domains -- from biology to the social sciences -- many questions boil down to textitWhat effect will we observe if we intervene on a particular variable?<n>We propose using meta-learning to create an end-to-end model: the Model-Averaged Causal Estimation Transformer Neural Process (MACE-TNP)<n>Our work establishes meta-learning as a flexible and scalable paradigm for approximating complex Bayesian causal inference.
arXiv Detail & Related papers (2025-07-07T22:48:32Z) - Spectra-to-Structure and Structure-to-Spectra Inference Across the Periodic Table [60.78615287040791]
XAStruct is a learning framework capable of both predicting XAS spectra from crystal structures and inferring local structural descriptors from XAS input.<n>XAStruct is trained on a large-scale dataset spanning over 70 elements across the periodic table.
arXiv Detail & Related papers (2025-06-13T15:58:05Z) - AlphaFold Database Debiasing for Robust Inverse Folding [58.792020809180336]
We introduce a Debiasing Structure AutoEncoder (DeSAE) that learns to reconstruct native-like conformations from intentionally corrupted backbone geometries.<n>At inference, applying DeSAE to AFDB structures produces debiased structures that significantly improve inverse folding performance.
arXiv Detail & Related papers (2025-06-10T02:25:31Z) - CIKT: A Collaborative and Iterative Knowledge Tracing Framework with Large Language Models [14.273311275013057]
Knowledge Tracing aims to model a student's learning state over time and predict their future performance.<n>Traditional KT methods often face challenges in explainability, scalability, and effective modeling of complex knowledge dependencies.<n>We propose Collaborative Iterative Knowledge Tracing (CIKT), a framework that harnesses Large Language Models to enhance both prediction accuracy and explainability.
arXiv Detail & Related papers (2025-05-23T10:16:16Z) - Spectral Normalization and Voigt-Reuss net: A universal approach to microstructure-property forecasting with physical guarantees [0.0]
A crucial step in the design process is the rapid evaluation of effective mechanical, thermal, or, in general, elasticity properties.
The classical simulation-based approach, which uses, e.g., finite elements and FFT-based solvers, can require substantial computational resources.
We propose a novel spectral normalization scheme that a priori enforces these bounds.
arXiv Detail & Related papers (2025-04-01T12:21:57Z) - SPHINX: Structural Prediction using Hypergraph Inference Network [19.853413818941608]
We introduce Structural Prediction using Hypergraph Inference Network (SPHINX), a model that learns to infer a latent hypergraph structure in an unsupervised way.
We show that the recent advancement in k-subset sampling represents a suitable tool for producing discrete hypergraph structures.
The resulting model can generate the higher-order structure necessary for any modern hypergraph neural network.
arXiv Detail & Related papers (2024-10-04T07:49:57Z) - Approximate learning of parsimonious Bayesian context trees [0.0]
The proposed framework is tested on synthetic and real-world data examples.
It outperforms existing sequence models when fitted to real protein sequences and honeypot computer terminal sessions.
arXiv Detail & Related papers (2024-07-27T11:50:40Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Order-based Structure Learning with Normalizing Flows [7.972479571606131]
Estimating causal structure of observational data is a challenging search problem that scales super-exponentially with graph size.
Existing methods use continuous relaxations to make this problem computationally tractable but often restrict the data-generating process to additive noise models (ANMs)
We present Order-based Structure Learning with Normalizing Flows (OSLow), a framework that relaxes these assumptions using autoregressive normalizing flows.
arXiv Detail & Related papers (2023-08-14T22:17:33Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
We describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs.
Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at.
arXiv Detail & Related papers (2022-10-26T13:27:26Z) - Unsupervised Learning of Equivariant Structure from Sequences [30.974508897223124]
We present an unsupervised framework to learn the symmetry from the time sequence of length at least three.
We will demonstrate that, with our framework, the hidden disentangled structure of the dataset naturally emerges as a by-product.
arXiv Detail & Related papers (2022-10-12T07:29:18Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - DiBS: Differentiable Bayesian Structure Learning [38.01659425023988]
We propose a general, fully differentiable framework for Bayesian structure learning (DiBS)
DiBS operates in the continuous space of a latent probabilistic graph representation.
Contrary to existing work, DiBS is agnostic to the form of the local conditional distributions.
arXiv Detail & Related papers (2021-05-25T11:23:08Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
We propose a fully-differentiable approach for protein structure optimization, guided by a data-driven generative network.
Our EBM-Fold approach can efficiently produce high-quality decoys, compared against traditional Rosetta-based structure optimization routines.
arXiv Detail & Related papers (2021-05-11T03:40:29Z) - RNA Secondary Structure Prediction By Learning Unrolled Algorithms [70.09461537906319]
In this paper, we propose an end-to-end deep learning model, called E2Efold, for RNA secondary structure prediction.
The key idea of E2Efold is to directly predict the RNA base-pairing matrix, and use an unrolled algorithm for constrained programming as the template for deep architectures to enforce constraints.
With comprehensive experiments on benchmark datasets, we demonstrate the superior performance of E2Efold.
arXiv Detail & Related papers (2020-02-13T23:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.