論文の概要: Bundle Adjusted Gaussian Avatars Deblurring
- arxiv url: http://arxiv.org/abs/2411.16758v1
- Date: Sun, 24 Nov 2024 10:03:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:35:40.764387
- Title: Bundle Adjusted Gaussian Avatars Deblurring
- Title(参考訳): ガウスアバターのバンドル調整
- Authors: Muyao Niu, Yifan Zhan, Qingtian Zhu, Zhuoxiao Li, Wei Wang, Zhihang Zhong, Xiao Sun, Yinqiang Zheng,
- Abstract要約: 本研究では,人間の運動に起因するぼかし形成の3次元的物理指向モデルと,運動誘発ぼかし画像に見られる曖昧さを明らかにするための3次元人体運動モデルを提案する。
我々は,360度同期ハイブリッド露光カメラシステムによって取得された実撮データセットとともに,既存のマルチビューキャプチャから合成されたデータセットを用いて,このタスクのベンチマークを確立した。
- 参考スコア(独自算出の注目度): 31.718130377229482
- License:
- Abstract: The development of 3D human avatars from multi-view videos represents a significant yet challenging task in the field. Recent advancements, including 3D Gaussian Splattings (3DGS), have markedly progressed this domain. Nonetheless, existing techniques necessitate the use of high-quality sharp images, which are often impractical to obtain in real-world settings due to variations in human motion speed and intensity. In this study, we attempt to explore deriving sharp intrinsic 3D human Gaussian avatars from blurry video footage in an end-to-end manner. Our approach encompasses a 3D-aware, physics-oriented model of blur formation attributable to human movement, coupled with a 3D human motion model to clarify ambiguities found in motion-induced blurry images. This methodology facilitates the concurrent learning of avatar model parameters and the refinement of sub-frame motion parameters from a coarse initialization. We have established benchmarks for this task through a synthetic dataset derived from existing multi-view captures, alongside a real-captured dataset acquired through a 360-degree synchronous hybrid-exposure camera system. Comprehensive evaluations demonstrate that our model surpasses existing baselines.
- Abstract(参考訳): 多視点ビデオからの3D人間のアバターの開発は、この分野における重要な課題である。
3D Gaussian Splattings (3DGS)を含む最近の進歩は、この領域を著しく進歩させてきた。
それでも既存の技術では、人間の動きの速さや強度の変化によって現実の環境では実現不可能な、高品質なシャープな画像を使用する必要がある。
本研究では,鮮明な3次元人間ガウスアバターを,端から端までぼやけた映像から抽出する方法について検討する。
提案手法は,人間の運動に起因する3次元のぼかし生成の物理指向モデルと3次元の人体運動モデルを組み合わせて,運動誘発ぼかし画像の曖昧さを明らかにする。
この手法は、粗い初期化からアバターモデルパラメータの同時学習とサブフレーム運動パラメータの洗練を容易にする。
我々は,360度同期ハイブリッド露光カメラシステムによって取得された実撮データセットとともに,既存のマルチビューキャプチャから合成されたデータセットを用いて,このタスクのベンチマークを確立した。
総合的な評価は、我々のモデルは既存のベースラインを超えていることを示している。
関連論文リスト
- iHuman: Instant Animatable Digital Humans From Monocular Videos [16.98924995658091]
モノクロビデオからアニマタブルな3Dデジタル人間を作るための,迅速かつシンプルで効果的な方法を提案する。
この研究は、人間の身体の正確な3Dメッシュ型モデリングの必要性を達成し、説明します。
我々の手法は(訓練時間の観点から)最も近い競合相手よりも桁違いに高速である。
論文 参考訳(メタデータ) (2024-07-15T18:51:51Z) - NPGA: Neural Parametric Gaussian Avatars [46.52887358194364]
マルチビュー映像記録から高忠実度制御可能なアバターを作成するためのデータ駆動方式を提案する。
我々は,高効率なレンダリングのための3次元ガウススプラッティングの手法を構築し,点雲のトポロジカルな柔軟性を継承する。
提案手法をNeRSembleデータセット上で評価し,NPGAが従来の自己再現タスクの2.6PSNRよりも有意に優れていたことを示す。
論文 参考訳(メタデータ) (2024-05-29T17:58:09Z) - Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance [25.346255905155424]
本稿では,潜伏拡散フレームワーク内での3次元人間のパラメトリックモデルを活用することで,人間の画像アニメーションの方法論を提案する。
人間の3次元パラメトリックモデルを動作誘導として表現することにより、基準画像と音源映像の動きの間に人体のパラメトリック形状アライメントを行うことができる。
提案手法は,提案した組込みデータセットに対して,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-03-21T18:52:58Z) - HMP: Hand Motion Priors for Pose and Shape Estimation from Video [52.39020275278984]
我々は,多種多様な高品質の手の動きを特徴とするAMASSデータセットに基づいて,手動に特有な生成動作を開発する。
頑健な動きの統合は、特に隠蔽されたシナリオにおいて、パフォーマンスを著しく向上させる。
HO3DおよびDexYCBデータセットの質的および定量的評価により,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-12-27T22:35:33Z) - GaussianAvatar: Towards Realistic Human Avatar Modeling from a Single Video via Animatable 3D Gaussians [51.46168990249278]
一つのビデオから動的に3D映像を映し出すリアルな人間のアバターを作成するための効率的なアプローチを提案する。
GustafAvatarは、公開データセットと収集データセットの両方で検証されています。
論文 参考訳(メタデータ) (2023-12-04T18:55:45Z) - Egocentric Whole-Body Motion Capture with FisheyeViT and Diffusion-Based
Motion Refinement [65.08165593201437]
本研究では,人体と手の動きを同時に推定する単一魚眼カメラを用いて,自我中心型全体モーションキャプチャーを探索する。
この課題は、高品質なデータセットの欠如、魚眼カメラの歪み、人間の身体の自己閉塞など、重大な課題を提起する。
そこで本研究では,魚眼画像の特徴を3次元人体ポーズ予測のための3次元熱マップ表現に変換した魚眼画像の特徴を抽出する手法を提案する。
論文 参考訳(メタデータ) (2023-11-28T07:13:47Z) - Towards Hard-pose Virtual Try-on via 3D-aware Global Correspondence
Learning [70.75369367311897]
3D対応のグローバルな対応は、グローバルな意味的相関、局所的な変形、および3D人体の幾何学的先行を共同でエンコードする信頼性のあるフローである。
対向ジェネレータは、3D認識フローによって歪んだ衣服と、対象者の画像とを入力として、フォトリアリスティックな試着結果を合成する。
論文 参考訳(メタデータ) (2022-11-25T12:16:21Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
フルボディの体積アバターを学習するためのフレームワークであるDRaCoNを提案する。
2Dと3Dのニューラルレンダリング技術の利点を利用する。
挑戦的なZJU-MoCapとHuman3.6Mデータセットの実験は、DRaCoNが最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2022-03-29T17:59:15Z) - Human Performance Capture from Monocular Video in the Wild [50.34917313325813]
本研究では,挑戦的な身体ポーズを特徴とするモノクロ映像から動的3次元人体形状をキャプチャする手法を提案する。
本手法は,現在開発中の3DPWビデオデータセットにおいて,最先端の手法よりも優れる。
論文 参考訳(メタデータ) (2021-11-29T16:32:41Z) - Exploring Severe Occlusion: Multi-Person 3D Pose Estimation with Gated
Convolution [34.301501457959056]
本稿では,2次元関節を3次元に変換するために,ゲート型畳み込みモジュールを用いた時間回帰ネットワークを提案する。
また, 正規化ポーズを大域軌跡に変換するために, 単純かつ効果的な局所化手法も実施した。
提案手法は,最先端の2D-to-3Dポーズ推定法よりも優れている。
論文 参考訳(メタデータ) (2020-10-31T04:35:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。