論文の概要: PreF3R: Pose-Free Feed-Forward 3D Gaussian Splatting from Variable-length Image Sequence
- arxiv url: http://arxiv.org/abs/2411.16877v1
- Date: Mon, 25 Nov 2024 19:16:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:35:27.584346
- Title: PreF3R: Pose-Free Feed-Forward 3D Gaussian Splatting from Variable-length Image Sequence
- Title(参考訳): PreF3R: 可変長画像列からのフィードフォワード3Dガウススプレイティング
- Authors: Zequn Chen, Jiezhi Yang, Heng Yang,
- Abstract要約: 可変長の画像列から,PreF3R, Pose-Free Feed-forward 3D再構成を提案する。
PreF3Rは、カメラキャリブレーションの必要性を排除し、正準座標フレーム内の3次元ガウス場を、未提示画像のシーケンスから直接再構成する。
- 参考スコア(独自算出の注目度): 3.61512056914095
- License:
- Abstract: We present PreF3R, Pose-Free Feed-forward 3D Reconstruction from an image sequence of variable length. Unlike previous approaches, PreF3R removes the need for camera calibration and reconstructs the 3D Gaussian field within a canonical coordinate frame directly from a sequence of unposed images, enabling efficient novel-view rendering. We leverage DUSt3R's ability for pair-wise 3D structure reconstruction, and extend it to sequential multi-view input via a spatial memory network, eliminating the need for optimization-based global alignment. Additionally, PreF3R incorporates a dense Gaussian parameter prediction head, which enables subsequent novel-view synthesis with differentiable rasterization. This allows supervising our model with the combination of photometric loss and pointmap regression loss, enhancing both photorealism and structural accuracy. Given a sequence of ordered images, PreF3R incrementally reconstructs the 3D Gaussian field at 20 FPS, therefore enabling real-time novel-view rendering. Empirical experiments demonstrate that PreF3R is an effective solution for the challenging task of pose-free feed-forward novel-view synthesis, while also exhibiting robust generalization to unseen scenes.
- Abstract(参考訳): 可変長の画像列から,PreF3R, Pose-Free Feed-forward 3D再構成を提案する。
従来のアプローチとは異なり、PreF3Rはカメラキャリブレーションの必要性を排除し、標準座標フレーム内の3Dガウス場を直接アンポーズされた画像から再構成し、効率的なノベルビューレンダリングを可能にする。
DUSt3Rのペアワイド3次元構造再構成能力を活用し、空間記憶ネットワークを介して連続的なマルチビュー入力に拡張し、最適化に基づくグローバルアライメントの必要性を解消する。
さらに、PreF3Rは密度の高いガウスパラメータ予測ヘッドを組み込み、ラスタ化可能な新規ビュー合成を可能にする。
これにより、測光損失と点マップ回帰損失の組み合わせによるモデル監視が可能となり、光リアリズムと構造精度が向上する。
順序付けられた画像の列が与えられた後、PreF3Rは20FPSで3Dガウス場を漸進的に再構成し、それによってリアルタイムのノベルビューレンダリングを可能にする。
実証実験により、PreF3Rは、ポーズなしフィードフォワードノベルビュー合成の難解な課題に対する効果的な解であり、また、目に見えないシーンへの堅牢な一般化を示すことが示された。
関連論文リスト
- USP-Gaussian: Unifying Spike-based Image Reconstruction, Pose Correction and Gaussian Splatting [45.246178004823534]
スパイクカメラは、0-1ビットストリームを40kHzで撮影する革新的なニューロモルフィックカメラとして、ますます3D再構成タスクに採用されている。
以前のスパイクベースの3D再構成アプローチでは、ケースケースのパイプラインを使うことが多い。
本稿では,スパイクに基づく画像再構成,ポーズ補正,ガウス的スプラッティングをエンドツーエンドのフレームワークに統一する,相乗的最適化フレームワーク textbfUSP-Gaussian を提案する。
論文 参考訳(メタデータ) (2024-11-15T14:15:16Z) - No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplatは、多視点画像から3Dガウスアンによってパラメータ化された3Dシーンを再構成できるフィードフォワードモデルである。
提案手法は,推定時にリアルタイムな3次元ガウス再構成を実現する。
この研究は、ポーズフリーの一般化可能な3次元再構成において大きな進歩をもたらし、実世界のシナリオに適用可能であることを示す。
論文 参考訳(メタデータ) (2024-10-31T17:58:22Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - CoherentGS: Sparse Novel View Synthesis with Coherent 3D Gaussians [18.42203035154126]
2次元画像空間で制御できる構造付きガウス表現を導入する。
次に、ガウス群、特にその位置を制約し、最適化中に独立に動くのを防ぐ。
我々は,様々な場面における最先端のスパースビュー NeRF ベースのアプローチと比較して,顕著な改善を示した。
論文 参考訳(メタデータ) (2024-03-28T15:27:13Z) - GGRt: Towards Pose-free Generalizable 3D Gaussian Splatting in Real-time [112.32349668385635]
GGRtは、現実のカメラポーズの必要性を軽減する、一般化可能な新しいビュー合成のための新しいアプローチである。
最初のポーズフリーの一般化可能な3D-GSフレームワークとして、GGRtは$ge$5 FPSで、リアルタイムレンダリングは$ge$100 FPSで実現している。
論文 参考訳(メタデータ) (2024-03-15T09:47:35Z) - pixelSplat: 3D Gaussian Splats from Image Pairs for Scalable Generalizable 3D Reconstruction [26.72289913260324]
pixelSplatは、画像のペアから3次元ガウスプリミティブによってパラメータ化された3次元放射界の再構成を学ぶフィードフォワードモデルである。
我々のモデルは、スケーラブルなトレーニングのためのリアルタイム・メモリ効率のレンダリングと、推論時の高速な3次元再構成を特徴としている。
論文 参考訳(メタデータ) (2023-12-19T17:03:50Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
我々は、文字の新たなビューをリアルタイムに合成するための新しいアプローチ、GPS-Gaussianを提案する。
提案手法は,スパースビューカメラ設定下での2K解像度のレンダリングを可能にする。
論文 参考訳(メタデータ) (2023-12-04T18:59:55Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
フォトリアリスティック・ノベルビューを合成可能な高忠実度3次元生成対向ネットワーク(GAN)インバージョン・フレームワークを提案する。
提案手法は,1枚の画像から高忠実度3Dレンダリングを可能にし,AI生成3Dコンテンツの様々な応用に期待できる。
論文 参考訳(メタデータ) (2022-11-28T18:59:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。