論文の概要: Fast convolution algorithm for state space models
- arxiv url: http://arxiv.org/abs/2411.17729v1
- Date: Fri, 22 Nov 2024 05:30:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-01 18:31:37.759263
- Title: Fast convolution algorithm for state space models
- Title(参考訳): 状態空間モデルのための高速畳み込みアルゴリズム
- Authors: Gregory Beylkin,
- Abstract要約: 本稿では,線形時間不変系の行列伝達関数を時間領域に適用するための頑健なアルゴリズムを提案する。
有限個のユーザ選択精度に対して、行列ベクトル乗算の数は$mathcalOleft(log_2Lright)$に削減できることを示す。
重要なことに、時間領域におけるカスケードの実装を用いることで、転送関数を適用するには、N+1$行列ベクトル乗算しか必要としない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a fast, robust algorithm for applying a matrix transfer function of a linear time invariant system (LTI) in time domain. Computing $L$ states of a multiple-input multiple-output (MIMO) LTI appears to require $L$ matrix-vector multiplications. We demonstrate that, for any finite user-selected accuracy, the number of matrix-vector multiplications can be reduced to $\mathcal{O}\left(\log_{2}L\right)$ (within an $\mathcal{O}\left(L\right)$ algorithm). The algorithm uses an approximation of the rational transfer function in the z-domain by a matrix polynomial of degree $2^{N+1}-1$, where $N$ is chosen to achieve any user-selected accuracy. Importantly, using a cascade implementation in time domain, applying the transfer function requires only $N+1$ matrix-vector multiplications. We note that LTI systems are used in state space models (SSMs) for modeling long range dependencies where $L$ is large. In applications where the state matrix of LTI system is approximated by a structured matrix, the computational cost is further reduced. We briefly describe several structured approximations of matrices that can be used for such purpose.
- Abstract(参考訳): 本稿では,線形時間不変系の行列伝達関数を時間領域に適用するための高速でロバストなアルゴリズムを提案する。
マルチインプット多重出力(MIMO) LTIの$L$状態の計算には、$L$行列ベクトル乗算が必要である。
有限個のユーザ選択精度に対して、行列ベクトル乗算の数は$\mathcal{O}\left(\log_{2}L\right)$($\mathcal{O}\left(L\right)$アルゴリズム)に還元できることを示した。
このアルゴリズムは、z領域における有理変換関数の近似を、次数2^{N+1}-1$の行列多項式で用いる。
重要なことに、時間領域におけるカスケードの実装を用いることで、転送関数を適用するには、N+1$行列ベクトル乗算しか必要としない。
LTIシステムは、L$が大きければ長い範囲依存をモデル化するために、状態空間モデル(SSM)で使用されることに留意する。
LTIシステムの状態行列が構造化行列によって近似された場合、計算コストはさらに削減される。
このような目的のために使用できる行列のいくつかの構造化近似を簡潔に記述する。
関連論文リスト
- SoS Certificates for Sparse Singular Values and Their Applications: Robust Statistics, Subspace Distortion, and More [37.208622097149714]
我々は、最大$|M u|$で境界を証明できる新しいアップタイムアルゴリズムの族を与える。
我々の認証アルゴリズムは, Sum-of-Squares階層を必須に活用する。
論文 参考訳(メタデータ) (2024-12-30T18:59:46Z) - Faster Sampling from Log-Concave Densities over Polytopes via Efficient Linear Solvers [29.212403229351253]
我々は、このマルコフ連鎖のほぼ最適な実装を示し、ステップごとの複雑さは、約$A$のゼロでないエントリの数であるのに対して、マルコフ連鎖のステップの数は同じである。
1) このダイキンウォークで生じる行列はゆっくりと変化すること,2) この遅い変化を利用した効率的な線形解法を展開し, 以前のステップで計算した情報を用いて行列の逆転を高速化すること,3) ランダム化されたテイラー級数に基づく推定器を用いてメトロポリスフィルタステップにおける行列項の計算を高速化すること,である。
論文 参考訳(メタデータ) (2024-09-06T14:49:43Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
線形スケッチを用いた行列とベクトルノルムの残差誤差推定問題について検討する。
これは、前作とほぼ同じスケッチサイズと精度で、経験的にかなり有利であることを示す。
また、スパースリカバリ問題に対して$Omega(k2/pn1-2/p)$低いバウンダリを示し、これは$mathrmpoly(log n)$ factorまで厳密である。
論文 参考訳(メタデータ) (2024-08-16T02:33:07Z) - Oja's Algorithm for Streaming Sparse PCA [7.059472280274011]
Oja's Algorithm for Streaming principal Component Analysis (PCA) for $n$ data-points in a $d$ dimensional space achieves the same sin-squared error $O(r_mathsfeff/n)$ as the offline algorithm in $O(d)$ space and $O(nd)$ time。
Ojaのアルゴリズムの出力をしきい値にする単純なシングルパス手順は、$O(d)$ space と $O(nd)$ time の正則性条件下での最小誤差を達成できることを示す。
論文 参考訳(メタデータ) (2024-02-11T16:36:48Z) - Fast Matrix Multiplication Without Tears: A Constraint Programming
Approach [8.52818380743467]
$N倍のM$行列と$M倍のP$行列の乗算は、単純な$NMPアプローチが示しているよりも少ない乗算で実現できることが知られている。
これにより、高速行列乗法における制約満足度問題が発生する。
本稿では,高速行列乗算のための非可換アルゴリズムを見つけるための,シンプルながら新しい制約プログラミング手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T19:15:24Z) - An Improved Classical Singular Value Transformation for Quantum Machine Learning [2.3326951882644553]
量子機械学習(QML)における量子スピードアップについて,量子特異値変換(QSVT)フレームワークを解析して検討する。
我々の重要な洞察は、行列安定性を計算するための反復的手法であるClenshaw繰り返しと、QSVTを古典的にシミュレートするスケッチ技術を組み合わせることである。
論文 参考訳(メタデータ) (2023-03-02T18:53:03Z) - Refined Regret for Adversarial MDPs with Linear Function Approximation [50.00022394876222]
我々は,損失関数が約1,300ドル以上のエピソードに対して任意に変化するような,敵対的決定過程(MDP)の学習を検討する。
本稿では,同じ設定で$tildemathcal O(K2/3)$に対する後悔を改善する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-30T14:37:21Z) - Optimal Query Complexities for Dynamic Trace Estimation [59.032228008383484]
我々は,行列がゆっくりと変化している動的環境において,正確なトレース推定に必要な行列ベクトルクエリ数を最小化する問題を考える。
我々は、$delta$失敗確率で$epsilon$エラーまで、すべての$m$トレースを同時に推定する新しいバイナリツリー要約手順を提供する。
我々の下界(1)は、静的な設定においてもフロベニウスノルム誤差を持つ行列ベクトル積モデルにおけるハッチンソン推定子の第一の厳密な境界を与え、(2)動的トレース推定のための最初の無条件下界を与える。
論文 参考訳(メタデータ) (2022-09-30T04:15:44Z) - Private Matrix Approximation and Geometry of Unitary Orbits [29.072423395363668]
この問題は、スペクトルが$Lambda$と同じ行列で$A$を近似しようとする。
近似誤差の上限値と下限値を持つ効率的でプライベートなアルゴリズムを与える。
論文 参考訳(メタデータ) (2022-07-06T16:31:44Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
リッジ回帰問題に対する1+varepsilon$近似解を計算するスケッチベース反復アルゴリズムを提案する。
また,このアルゴリズムがカーネルリッジ回帰の高速化に有効であることを示す。
論文 参考訳(メタデータ) (2022-04-13T22:18:47Z) - Perturbation Analysis of Randomized SVD and its Applications to
High-dimensional Statistics [8.90202564665576]
一般の「信号+雑音」の枠組みによるRSVDの統計特性について検討する。
3つの統計的推論問題に適用した場合、RSVDのほぼ最適性能保証を導出する。
論文 参考訳(メタデータ) (2022-03-19T07:26:45Z) - Non-PSD Matrix Sketching with Applications to Regression and
Optimization [56.730993511802865]
非PSDおよび2乗根行列の次元削減法を提案する。
複数のダウンストリームタスクにこれらのテクニックをどのように使用できるかを示す。
論文 参考訳(メタデータ) (2021-06-16T04:07:48Z) - Quantum algorithms for spectral sums [50.045011844765185]
正半定値行列(PSD)のスペクトル和を推定するための新しい量子アルゴリズムを提案する。
本稿では, スペクトルグラフ理論における3つの問題に対して, アルゴリズムと手法が適用可能であることを示す。
論文 参考訳(メタデータ) (2020-11-12T16:29:45Z) - Linear-Sample Learning of Low-Rank Distributions [56.59844655107251]
ktimes k$, rank-r$, matrices to normalized $L_1$ distance requires $Omega(frackrepsilon2)$ sample。
我々は、$cal O(frackrepsilon2log2fracepsilon)$ sample, a number linear in the high dimension, and almost linear in the matrices, usually low, rank proofs.というアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-30T19:10:32Z) - What if Neural Networks had SVDs? [66.91160214071088]
様々なニューラルネットワークでは、行列反転のような時間を要する行列演算を採用している。
本稿では,行列演算を高速化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-29T12:58:52Z) - Approximate Multiplication of Sparse Matrices with Limited Space [24.517908972536432]
我々はスパース共起方向を開発し、期待値の$widetildeOleft((nnz(X)+nnz(Y))ell+nell2right)$に時間複雑性を減少させる。
理論的解析により,我々のアルゴリズムの近似誤差はCODとほぼ同値であることが判明した。
論文 参考訳(メタデータ) (2020-09-08T05:39:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。