論文の概要: A solvable generative model with a linear, one-step denoiser
- arxiv url: http://arxiv.org/abs/2411.17807v2
- Date: Thu, 23 Jan 2025 04:46:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:56:41.639444
- Title: A solvable generative model with a linear, one-step denoiser
- Title(参考訳): 線形1ステップデノイザを用いた可解生成モデル
- Authors: Indranil Halder,
- Abstract要約: 線形デノイザに基づく解析的抽出可能な単一ステップ拡散モデルを構築した。
トレーニングデータセットのサイズがデータポイントの次元に達すると,Kulback-Leibler分散の単調落下相が始まります。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We develop an analytically tractable single-step diffusion model based on a linear denoiser and present explicit formula for the Kullback-Leibler divergence between generated and sampling distribution, taken to be isotropic Gaussian, showing the effect of finite diffusion time and noise scale. Our study further reveals that the monotonic fall phase of Kullback-Leibler divergence begins when the training dataset size reaches the dimension of the data points. Along the way, we provide a mathematically precise definition of memorization to non-memorization transition when only finite number of data points are available. It is shown that the simplified model also features this transition during the monotonic fall phase of the aforementioned Kullback-Leibler divergence. For large-scale practical diffusion models, we explain why higher number of diffusion steps enhance production quality based on the theoretical arguments presented before. In addition, we show that higher diffusion steps does not necessarily help in reducing memorization. These two facts combined suggests existence of an optimal number of diffusion steps for finite number of training samples.
- Abstract(参考訳): 本研究では, 有限拡散時間と雑音スケールの影響を示す等方的ガウス分布とサンプリング分布のKulback-Leibler分散に関する解析的抽出可能な単一ステップ拡散モデルを構築した。
さらに,トレーニングデータセットのサイズがデータポイントの次元に達すると,Kulback-Leibler分散の単調落下相が始まります。
その過程で、有限個のデータポイントしか利用できない場合に、非記憶遷移に対する記憶の数学的に正確な定義を提供する。
単純化されたモデルはまた、前述のクルバック・リーブラー分岐の単調降下相の間、この遷移を特徴としている。
大規模実用拡散モデルでは,以前に提示した理論的議論に基づいて,拡散段数の増加が生産品質を向上させる理由を説明する。
さらに, 高い拡散ステップは, 記憶の減少に必ずしも寄与しないことを示す。
これら2つの事実を組み合わせると、有限個のトレーニングサンプルに対して最適な拡散ステップが存在することが示唆される。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - On the Relation Between Linear Diffusion and Power Iteration [42.158089783398616]
相関機械として生成過程を研究する」
生成過程の早い段階で低周波が出現し, 固有値に依存する速度で, 偏極基底ベクトルが真のデータにより整合していることが示される。
このモデルにより、線形拡散モデルが、一般的な電力反復法と同様に、基礎データの先頭固有ベクトルに平均的に収束することを示すことができる。
論文 参考訳(メタデータ) (2024-10-16T07:33:12Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
連続時間マルコフ連鎖(CTMC)に基づくスコアベース離散拡散モデルの理論的側面について検討する。
本稿では,事前定義された時間点におけるスコア推定値を利用する離散時間サンプリングアルゴリズムを一般状態空間$[S]d$に導入する。
我々の収束解析はジルサノフ法を用いて離散スコア関数の重要な性質を確立する。
論文 参考訳(メタデータ) (2024-10-03T09:07:13Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
拡散プロセスは、トレーニングデータセットのバイアスを反映したサンプルを生成する傾向がある。
所望の分布に基づいて拡散制約を付与し,制約付き拡散モデルを構築する。
本稿では,制約付き拡散モデルを用いて,目的と制約の最適なトレードオフを実現する混合データ分布から新しいデータを生成することを示す。
論文 参考訳(メタデータ) (2024-08-27T14:25:42Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
拡散モデルは、所望の特性に向けてサンプル生成を操るために、スコア関数にタスク固有の情報を注入することの恩恵を受ける。
本稿では,ガウス混合モデルの文脈における拡散モデルに対する誘導の影響を理解するための最初の理論的研究を提供する。
論文 参考訳(メタデータ) (2024-03-03T23:15:48Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Convergence Analysis of Discrete Diffusion Model: Exact Implementation
through Uniformization [17.535229185525353]
連続マルコフ連鎖の均一化を利用したアルゴリズムを導入し、ランダムな時間点の遷移を実装した。
我々の結果は、$mathbbRd$における拡散モデルの最先端の成果と一致し、さらに$mathbbRd$設定と比較して離散拡散モデルの利点を浮き彫りにする。
論文 参考訳(メタデータ) (2024-02-12T22:26:52Z) - Lecture Notes in Probabilistic Diffusion Models [0.5361320134021585]
拡散モデルは非平衡熱力学に基づいてゆるやかにモデル化される。
拡散モデルは、元のデータサンプルが属するデータ多様体を学習する。
拡散モデルは、変分オートエンコーダやフローモデルとは異なり、元のデータと同じ次元の潜伏変数を持つ。
論文 参考訳(メタデータ) (2023-12-16T09:36:54Z) - Blackout Diffusion: Generative Diffusion Models in Discrete-State Spaces [0.0]
前方拡散過程における任意の離散状態マルコフ過程の理論的定式化を開発する。
例えばBlackout Diffusion'は、ノイズからではなく、空のイメージからサンプルを生成することを学習する。
論文 参考訳(メタデータ) (2023-05-18T16:24:12Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
本稿では,未知の低次元線形部分空間上でデータをサポートする場合の拡散モデルのスコア近似,推定,分布回復について検討する。
適切に選択されたニューラルネットワークアーキテクチャでは、スコア関数を正確に近似し、効率的に推定することができる。
推定スコア関数に基づいて生成された分布は、データ幾何学構造を捕捉し、データ分布の近傍に収束する。
論文 参考訳(メタデータ) (2023-02-14T17:02:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。