論文の概要: Can LLMs plan paths in the real world?
- arxiv url: http://arxiv.org/abs/2411.17912v2
- Date: Mon, 02 Dec 2024 02:42:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 13:35:48.621115
- Title: Can LLMs plan paths in the real world?
- Title(参考訳): LLMは現実世界に経路を計画できるのか?
- Authors: Wanyi Chen, Meng-Wen Su, Nafisa Mehjabin, Mary L. Cummings,
- Abstract要約: 実世界の6つのパスプランニングシナリオを通じて,3つの大規模言語モデル(LLM)を検証した。
実験の結果,全てのLSMが複数の誤りを犯し,信頼できないパスプランナであることが判明した。
- 参考スコア(独自算出の注目度): 2.024925013349319
- License:
- Abstract: As large language models (LLMs) increasingly integrate into vehicle navigation systems, understanding their path-planning capability is crucial. We tested three LLMs through six real-world path-planning scenarios in various settings and with various difficulties. Our experiments showed that all LLMs made numerous errors in all scenarios, revealing that they are unreliable path planners. We suggest that future work focus on implementing mechanisms for reality checks, enhancing model transparency, and developing smaller models.
- Abstract(参考訳): 大型言語モデル(LLM)が車両ナビゲーションシステムに統合されるにつれて、その経路計画能力を理解することが重要である。
実世界の6つのパスプランニングシナリオを,様々な環境と難易度で3つのLSMを検証した。
実験の結果,全てのLSMが複数の誤りを犯し,信頼できないパスプランナであることが判明した。
今後は、現実チェックのメカニズムの実装、モデルの透明性の向上、より小さなモデルの開発に注力していくことを提案する。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - EgoPlan-Bench2: A Benchmark for Multimodal Large Language Model Planning in Real-World Scenarios [53.26658545922884]
EgoPlan-Bench2は,MLLMの計画能力を評価するためのベンチマークである。
我々は,21の競争的MLLMを評価し,その限界を詳細に分析した結果,実世界の計画において大きな課題に直面していることが明らかとなった。
EgoPlan-Bench2におけるGPT-4Vの10.24倍の性能向上を図る。
論文 参考訳(メタデータ) (2024-12-05T18:57:23Z) - MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
大規模言語モデル(LLM)は、ロボティクスの操作やナビゲーションなど、さまざまな領域にまたがる優れた計画能力を示している。
特殊なLLMエージェント間で高レベル計画および低レベル制御コード生成を分散する新しいマルチエージェントLLMフレームワークを提案する。
長軸タスクを含む9つのRLBenchタスクに対するアプローチを評価し、ゼロショット環境でロボット操作を解く能力を実証した。
論文 参考訳(メタデータ) (2024-11-26T17:53:44Z) - Can LLMs plan paths with extra hints from solvers? [2.874944508343474]
大規模言語モデル(LLM)は、自然言語処理、数学的問題解決、プログラム合成に関連するタスクにおいて顕著な能力を示している。
本稿では,従来のロボット計画課題の解決において,解法生成フィードバックを統合することでLCM性能を向上させる手法について検討する。
論文 参考訳(メタデータ) (2024-10-07T14:00:08Z) - Embodied AI in Mobile Robots: Coverage Path Planning with Large Language Models [6.860460230412773]
移動体エージェントのためのLLM方式の経路計画フレームワークを提案する。
提案する多層アーキテクチャは,経路計画段階におけるLPMを用いて,移動エージェントの低レベルアクチュエータと統合する。
本実験により,LLMの2次元平面推論能力と完全カバレッジパス計画タスクを改善することができることが示された。
論文 参考訳(メタデータ) (2024-07-02T12:38:46Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
大規模言語モデル (LLM) は、物理世界の意思決定問題を解くことができる。
このモデルの下で、LLM Plannerは、プロンプトを介して言語ベースのサブゴールを反復的に生成することにより、部分的に観測可能なマルコフ決定プロセス(POMDP)をナビゲートする。
我々は,事前学習したLLMプランナーが,文脈内学習を通じてベイズ的集計模倣学習(BAIL)を効果的に行うことを証明した。
論文 参考訳(メタデータ) (2024-05-30T09:42:54Z) - Probing Multimodal LLMs as World Models for Driving [72.18727651074563]
自律運転におけるMLLM(Multimodal Large Language Models)の適用について検討する。
GPT-4oのようなモデルの開発は進んでいるが、複雑な運転環境における性能は未解明のままである。
論文 参考訳(メタデータ) (2024-05-09T17:52:42Z) - Are You Being Tracked? Discover the Power of Zero-Shot Trajectory
Tracing with LLMs! [3.844253028598048]
LLMTrackは、ゼロショット軌道認識にLLMをどのように活用できるかを示すモデルである。
本研究では,屋内シナリオと屋外シナリオを特徴とする異なる軌跡を用いて,現実のデータセットを用いてモデルを評価した。
論文 参考訳(メタデータ) (2024-03-10T12:50:35Z) - LLM-Assist: Enhancing Closed-Loop Planning with Language-Based Reasoning [65.86754998249224]
従来のルールベースプランナとLCMベースのプランナを併用した,新しいハイブリッドプランナを開発した。
当社のアプローチでは,既存のプランナが苦労する複雑なシナリオをナビゲートし,合理的なアウトプットを生成すると同時に,ルールベースのアプローチと連携して作業する。
論文 参考訳(メタデータ) (2023-12-30T02:53:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。