論文の概要: Autonomous Imagination: Closed-Loop Decomposition of Visual-to-Textual Conversion in Visual Reasoning for Multimodal Large Language Models
- arxiv url: http://arxiv.org/abs/2411.18142v3
- Date: Wed, 11 Jun 2025 02:49:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-12 16:13:47.97478
- Title: Autonomous Imagination: Closed-Loop Decomposition of Visual-to-Textual Conversion in Visual Reasoning for Multimodal Large Language Models
- Title(参考訳): 自律的イマジネーション:マルチモーダル大言語モデルに対する視覚的-手動変換の閉ループ分解
- Authors: Jingming Liu, Yumeng Li, Boyuan Xiao, Yichang Jian, Ziang Qin, Tianjia Shao, Yao-Xiang Ding, Kun Zhou,
- Abstract要約: MLLM(Multimodal Large Language Models)は、一見単純な視覚的タスクに対処する。
これらのタスクは、視覚からテキストへの変換能力に挑戦する。
本稿では,MLLMが視覚入力を反復的に修正できるように,自律的想像力というアプローチを提案する。
- 参考スコア(独自算出の注目度): 27.78471707423076
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Under pure textual modality, Large Language Models (LLMs) have demonstrated remarkable success in complex reasoning tasks by decomposing them into simpler sub-problems. However, Multimodal Large Language Models (MLLMs) still struggle with some seemingly straightforward visual tasks, such as counting and solving jigsaw puzzles. We argue that these tasks challenge the ability of visual-to-textual conversion, where MLLMs convert visual information perceived from the input scene, to textual information for further reasoning and generating the answer. If the complexity of the visual input is beyond the perceptual capability of the MLLMs, without decomposing this conversion process, simply scaling inference-time reasoning cannot solve the task because it repeatedly encounters the same perceptual bottleneck. We propose an approach, autonomous imagination, to enable MLLMs to iteratively modify visual inputs (e.g. isolating objects, rearranging puzzle pieces) into intermediate visual states, decomposing visual-to-textual conversion into closed-loop visual modification steps. We show that, without any retraining, MLLMs can now solve tasks initially beyond their perceptual capability, highlighting that closed-loop visual modification can be an effective way of decomposing the visual reasoning task into solvable substeps. Project page: https://future-item.github.io/autoimagine-site/
- Abstract(参考訳): 純粋なテキストモダリティの下では、Large Language Models (LLMs) は複雑な推論タスクにおいて、それらをより単純なサブプロブレムに分解することで顕著な成功を収めている。
しかし、Multimodal Large Language Models (MLLM) は、ジグソーパズルの数え上げや解決など、一見単純な視覚的タスクに苦戦している。
これらの課題は、MLLMが入力シーンから知覚される視覚情報をテキスト情報に変換し、さらに推論し、回答を生成するという視覚・テキスト変換能力に挑戦するものである。
視覚入力の複雑さがMLLMの知覚能力を超えている場合、この変換プロセスを分解することなく、単に推論時間の推論をスケールすることは、同じ知覚的ボトルネックに何度も遭遇するため、そのタスクを解決できない。
本稿では,MLLMの視覚的入力(例えば,物体の分離,パズルの配置)を中間的な視覚状態に反復的に修正し,視覚からテキストへの変換を閉ループの視覚的修正ステップに分解する手法を提案する。
MLLMは,視覚的推論タスクを解き易いサブステップに分解する有効な方法であることを示す。
プロジェクトページ: https://future-item.github.io/autoimagine-site/
関連論文リスト
- ViCrit: A Verifiable Reinforcement Learning Proxy Task for Visual Perception in VLMs [98.27348724529257]
ViCrit (Visual Caption Hallucination Critic) は、VLMを訓練し、人間の手書き画像キャプションの段落に挿入された微妙で合成的な視覚幻覚をローカライズするRLプロキシタスクである。
ViCrit Taskでトレーニングされたモデルは、さまざまなビジョン言語モデルベンチマークで大幅に向上している。
論文 参考訳(メタデータ) (2025-06-11T19:16:54Z) - Vision Matters: Simple Visual Perturbations Can Boost Multimodal Math Reasoning [20.632248864242968]
言語のみのモデルでは、生の視覚入力を消費するMLLMと同等またはそれ以上の性能が得られることを示す。
そこで我々は,アルゴリズムの修正を必要とせず,知覚の堅牢性を高めるシンプルな視覚摂動フレームワークを提案する。
本研究は,マルチモーダル数学的推論における視覚摂動の重要性を明らかにするものである。
論文 参考訳(メタデータ) (2025-06-11T13:39:46Z) - Multi-Step Visual Reasoning with Visual Tokens Scaling and Verification [22.871255950998016]
本稿では,MLLMが視覚コンテンツに対して検証者誘導推論を行うことを可能にする,推論時ビジュアルトークンスケーリングのための新しいフレームワークを提案する。
提案手法は,様々な視覚的推論ベンチマークにおいて,既存手法よりも優れていた。
これらの結果は,次世代MLLMにおける微粒でコンテキスト対応の視覚的推論を実現するための動的推論機構の実現を実証するものである。
論文 参考訳(メタデータ) (2025-06-08T17:38:49Z) - How Can Objects Help Video-Language Understanding? [16.63183488540909]
本稿では,任意のコンピュータビジョンアルゴリズムを利用して視覚表現を抽出・構造化するフレームワークであるObjectMLを紹介する。
6つのビデオ質問ベンチマークの広範な評価を通じて、対象中心表現の明示的な統合が依然として必要であることを確認した。
意外なことに、連続的、構造化されたオブジェクト情報を定量化し、それらをプレーンテキストとして表現する単純なアプローチが最善である。
論文 参考訳(メタデータ) (2025-04-10T04:59:28Z) - Mitigating Visual Forgetting via Take-along Visual Conditioning for Multi-modal Long CoT Reasoning [53.790502697674754]
本稿では、画像入力を重要な推論段階に移行する戦略であるTake-Allong Visual Conditioning (TVC)を提案する。
TVCは、推論を通して視覚的なコンポーネントへの注意を維持するのに役立つ。
提案手法は,5つの数学的推論ベンチマークにおいて,最先端の性能を平均で達成する。
論文 参考訳(メタデータ) (2025-03-17T16:45:12Z) - Grounded Chain-of-Thought for Multimodal Large Language Models [66.04061083611863]
我々は,GCoT(Gunded Chain-of-Thought)と呼ばれるマルチモーダル大規模言語モデル(MLLM)の新しい学習タスクを提案する。
GCoTは、MLLMが関連する視覚的手がかりを段階的に認識し、グラウンド化するのを支援し、グラウンド化座標による正しい解を直感的に予測する。
この作業を容易にするために,5,033画像に対して24,022 GCoT例からなるマルチモーダルグラウンドド・チェーン・オブ・ソート(MM-GCoT)と呼ばれるデータセットを慎重に設計し,構築する。
論文 参考訳(メタデータ) (2025-03-17T04:07:47Z) - How Do Multimodal Large Language Models Handle Complex Multimodal Reasoning? Placing Them in An Extensible Escape Game [11.721839449847472]
マルチモーダル推論のベンチマークであるMM-Escapeを紹介する。
MM-Escapeは最終タスク完了と同時に中間モデル動作を強調している。
大規模な実験により、MLLMはスケールに関係なく、最も単純な部屋の脱出タスクを完了できることが示されている。
性能ボトルネックはモデルによって異なり、異なる障害モードとマルチモーダル推論能力の制限が明らかになる。
論文 参考訳(メタデータ) (2025-03-13T04:48:43Z) - Imagine while Reasoning in Space: Multimodal Visualization-of-Thought [70.74453180101365]
大型言語モデル(LLM)とマルチモーダル大規模言語モデル(MLLM)の複雑な推論を強化するために、CoTプロンプト(Chain-of-Thought)が有効であることが証明された。
我々は新しい推論パラダイムであるMultimodal Visualization-of-Thought (MVoT)を提案する。
MLLMにおいて、推論トレースの画像視覚化を生成することにより、視覚的思考を可能にする。
論文 参考訳(メタデータ) (2025-01-13T18:23:57Z) - Socratic Questioning: Learn to Self-guide Multimodal Reasoning in the Wild [35.91285472401222]
軽量マルチモーダル大言語モデル(MLLM)に適した革新的学習・推論フレームワークを考案する。
我々の自己組織化アプローチはMLLMを組織的にガイドし、ターゲット問題に関連する視覚的手がかりに集中させ、幻覚を減らし、きめ細かい画像の詳細を記述できるモデルの能力を高める。
各種ベンチマーク実験により,SQの自己探索,ゼロショット視覚推論,幻覚緩和における顕著な能力を示す。
論文 参考訳(メタデータ) (2025-01-06T12:16:56Z) - Combating Multimodal LLM Hallucination via Bottom-Up Holistic Reasoning [151.4060202671114]
マルチモーダル大規模言語モデル(MLLM)は、視覚言語タスクを前進させる前例のない能力を示した。
本稿では,MLLMにおける幻覚に対処するためのボトムアップ推論フレームワークを提案する。
本フレームワークは、認識レベル情報と認知レベルコモンセンス知識を検証・統合することにより、視覚とテキストの両方の入力における潜在的な問題に体系的に対処する。
論文 参考訳(メタデータ) (2024-12-15T09:10:46Z) - Thinking Before Looking: Improving Multimodal LLM Reasoning via Mitigating Visual Hallucination [13.706325901731665]
MLLM(Multimodal large language model)は、視覚的・言語的モダリティの統合を推進している。
思考の連鎖(CoT)推論のような現在のアプローチは、大規模言語モデル(LLM)の認知能力を増強している。
しかし、MLLMへの適応は、相互モダリティ理解における幻覚のリスクの増大によって妨げられている。
論文 参考訳(メタデータ) (2024-11-15T21:01:37Z) - TWIST & SCOUT: Grounding Multimodal LLM-Experts by Forget-Free Tuning [54.033346088090674]
TWIST と SCOUT は,事前学習したMLLM に視覚的接地能力を持たせるフレームワークである。
モデルを効果的に微調整するために,SCOUTと呼ばれる高品質な合成データセットを生成する。
このデータセットは、ステップバイステップのマルチモーダル推論プロセスを記述する、豊富な監視信号を提供する。
論文 参考訳(メタデータ) (2024-10-14T13:35:47Z) - Enhancing Advanced Visual Reasoning Ability of Large Language Models [20.32900494896848]
VL(Vision-Language)研究の最近の進歩は、複雑な視覚的推論のための新しいベンチマークを引き起こした。
我々はCVR-LLM(Complex Visual Reasoning Large Language Models)を提案する。
提案手法は,反復的自己修正ループを用いて,画像の詳細なコンテキスト認識記述に変換する。
また、LLMの文脈的理解と推論を強化するために、新しいマルチモーダル・インコンテキスト学習(ICL)手法を導入する。
論文 参考訳(メタデータ) (2024-09-21T02:10:19Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - Towards Semantic Equivalence of Tokenization in Multimodal LLM [149.11720372278273]
視覚トークン化は、視覚と言語間のセマンティックアライメントに不可欠である。
本稿では,新しい動的セマンティック等価ビジョントケナイザ(SeTok)を提案する。
SeTokは動的クラスタリングアルゴリズムを通じて、視覚的特徴をセマンティックユニットにグループ化する。
結果として得られる視覚トークンは意味的整合性を効果的に保持し、低周波と高周波の両方の視覚特徴をキャプチャする。
論文 参考訳(メタデータ) (2024-06-07T17:55:43Z) - Auto-Encoding Morph-Tokens for Multimodal LLM [151.2618346912529]
そこで本稿では,MLLMにテキスト生成を指示する視覚的プロンプトとして機能する。
実験により、モルヒネはマルチモーダル理解と生成を同時に行うための新しいSOTAを実現できることが示された。
論文 参考訳(メタデータ) (2024-05-03T08:43:06Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
視覚的コンテキスト獲得と論理的推論の集約は、視覚的推論タスクに取り組む上で重要であると我々は主張する。
我々はCantorと呼ばれる革新的なマルチモーダルCoTフレームワークを提案し、その特徴は知覚決定アーキテクチャである。
提案手法の有効性を実証し,マルチモーダルCoT性能の大幅な向上を示した。
論文 参考訳(メタデータ) (2024-04-24T17:59:48Z) - DoraemonGPT: Toward Understanding Dynamic Scenes with Large Language Models (Exemplified as A Video Agent) [73.10899129264375]
本稿では,LLMによる動的シーン理解のための包括的かつ概念的にエレガントなシステムであるドラモンGPTについて検討する。
質問/タスクのあるビデオが与えられた場合、DoraemonGPTは入力されたビデオをタスク関連の属性を格納するシンボリックメモリに変換することから始める。
我々は,DoraemonGPTの有効性を,3つのベンチマークといくつかのアプリ内シナリオで広範囲に評価した。
論文 参考訳(メタデータ) (2024-01-16T14:33:09Z) - Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs [50.77984109941538]
近年のマルチモーダル LLM の視覚能力は, いまだに系統的な欠点を呈している。
CLIP-blind pairs'(CLIP-blind pairs)を識別する。
様々なCLIPに基づく視覚・言語モデルの評価を行い、CLIPモデルに挑戦する視覚パターンとマルチモーダルLLMの問題との間に顕著な相関関係を見出した。
論文 参考訳(メタデータ) (2024-01-11T18:58:36Z) - Frozen Transformers in Language Models Are Effective Visual Encoder Layers [26.759544759745648]
大きな言語モデル(LLM)は、言語がないときに純粋に視覚的なタスクに対して驚くほど強力なエンコーダである。
我々の研究は、コンピュータビジョンタスクにLLMを活用することの限界を推し進めている。
視覚符号化における事前学習LLMの有効性を説明するために,情報フィルタリング仮説を提案する。
論文 参考訳(メタデータ) (2023-10-19T17:59:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。