論文の概要: Multimodal Integration of Longitudinal Noninvasive Diagnostics for Survival Prediction in Immunotherapy Using Deep Learning
- arxiv url: http://arxiv.org/abs/2411.18253v1
- Date: Wed, 27 Nov 2024 11:44:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:27:37.969142
- Title: Multimodal Integration of Longitudinal Noninvasive Diagnostics for Survival Prediction in Immunotherapy Using Deep Learning
- Title(参考訳): 深層学習を用いた免疫療法における生存予測のための経時的非侵襲的診断のマルチモーダル統合
- Authors: Melda Yeghaian, Zuhir Bodalal, Daan van den Broek, John B A G Haanen, Regina G H Beets-Tan, Stefano Trebeschi, Marcel A J van Gerven,
- Abstract要約: 免疫療法を施行した694例の大膵コホートより, 術前および治療中の血液測定, 処方薬およびCTベースの臓器量について検討した。
拡張マルチモーダル変圧器を用いた簡易時間注意(MMTSimTA)ネットワークの異なる変種をエンドツーエンドにトレーニングし,3,6,9,12ヶ月で死亡を予測した。
- 参考スコア(独自算出の注目度): 0.8428580558402998
- License:
- Abstract: Purpose: Analyzing noninvasive longitudinal and multimodal data using artificial intelligence could potentially transform immunotherapy for cancer patients, paving the way towards precision medicine. Methods: In this study, we integrated pre- and on-treatment blood measurements, prescribed medications and CT-based volumes of organs from a large pan-cancer cohort of 694 patients treated with immunotherapy to predict short and long-term overall survival. By leveraging a combination of recent developments, different variants of our extended multimodal transformer-based simple temporal attention (MMTSimTA) network were trained end-to-end to predict mortality at three, six, nine and twelve months. These models were also compared to baseline methods incorporating intermediate and late fusion based integration methods. Results: The strongest prognostic performance was demonstrated using the extended transformer-based multimodal model with area under the curves (AUCs) of $0.84 \pm $0.04, $0.83 \pm $0.02, $0.82 \pm $0.02, $0.81 \pm $0.03 for 3-, 6-, 9-, and 12-month survival prediction, respectively. Conclusion: Our findings suggest that analyzing integrated early treatment data has potential for predicting survival of immunotherapy patients. Integrating complementary noninvasive modalities into a jointly trained model, using our extended transformer-based architecture, demonstrated an improved multimodal prognostic performance, especially in short term survival prediction.
- Abstract(参考訳): 目的: 人工知能を用いた非侵襲的縦・マルチモーダルデータの解析は、がん患者に対する免疫療法を転換し、精密医療への道を開く可能性がある。
方法: 本研究は, 免疫療法を施行した694例の大膵コホートから, 術前および治療中の血液測定, 処方薬およびCTベースの臓器量を統合し, 短期的, 長期的生存を予測した。
近年の進歩を生かして,拡張マルチモーダルトランスフォーマーを用いた簡易時間注意ネットワーク(MMTSimTA)の異なる変種をエンドツーエンドにトレーニングし,死亡率を3,6,9,12ヶ月で予測した。
これらのモデルは、中間核融合法と後期核融合法を組み合わせたベースライン法と比較された。
結果: 変圧器を用いたマルチモーダルモデル(AUCs)を用いて, 曲線が0.84 \pm $0.04, $0.83 \pm $0.02, $0.82 \pm $0.02, $0.81 \pm $0.03 for 3-, 6-, 9-, 12カ月生存予測を行った。
結論: 統合的早期治療データを分析した結果, 免疫療法患者の生存を予測できる可能性が示唆された。
拡張型トランスフォーマーアーキテクチャを用いて, 相補的非侵襲的モダリティを協調訓練モデルに統合し, 短期生存予測において, マルチモーダル予測性能の向上を実証した。
関連論文リスト
- Survival Prediction in Lung Cancer through Multi-Modal Representation Learning [9.403446155541346]
本稿では,CTとPETの包括的情報と関連するゲノムデータを用いた生存予測手法を提案する。
我々は,マルチモーダル画像データと遺伝的情報を統合することにより,生存率の予測モデルを構築することを目的とする。
論文 参考訳(メタデータ) (2024-09-30T10:42:20Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
ネオアジュバント化学療法は乳癌の治療戦略として最近人気を集めている。
ネオアジュバント化学療法を推奨する現在のプロセスは、医療専門家の主観的評価に依存している。
本研究は, 乳癌の病理組織学的完全反応予測に最適化されたCDI$s$を応用することを検討した。
論文 参考訳(メタデータ) (2024-05-13T15:40:56Z) - Leveraging Transformers to Improve Breast Cancer Classification and Risk
Assessment with Multi-modal and Longitudinal Data [3.982926115291704]
マルチモーダルトランス (MMT) はマンモグラフィーと超音波を相乗的に利用するニューラルネットワークである。
MMTは、現在の検査と以前の画像を比較することで、時間的組織変化を追跡する。
5年間のリスク予測では、MMTはAUROCの0.826を達成し、従来のマンモグラフィーベースのリスクモデルより優れている。
論文 参考訳(メタデータ) (2023-11-06T16:01:42Z) - Cross-modality Attention-based Multimodal Fusion for Non-small Cell Lung
Cancer (NSCLC) Patient Survival Prediction [0.6476298550949928]
非小細胞肺癌(NSCLC)における患者生存予測のためのモダリティ特異的知識の統合を目的としたマルチモーダル核融合パイプラインを提案する。
組織画像データとRNA-seqデータのみを用いてc-index0.5772と0.5885を達成した単一モダリティと比較して, 提案した融合法はc-index0.6587を達成した。
論文 参考訳(メタデータ) (2023-08-18T21:42:52Z) - Improved Prognostic Prediction of Pancreatic Cancer Using Multi-Phase CT
by Integrating Neural Distance and Texture-Aware Transformer [37.55853672333369]
本稿では, 異なる患者のCT像における腫瘍と血管の正確な関係を記述した, 学習可能なニューラル距離を提案する。
発達したリスクマーカーは, 術前因子の生存率の予測因子として最強であった。
論文 参考訳(メタデータ) (2023-08-01T12:46:02Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
深層学習に基づく脳腫瘍再発位置予測ネットワークを提案する。
まず、パブリックデータセットBraTS 2021上で、マルチモーダル脳腫瘍セグメンテーションネットワークをトレーニングする。
次に、事前訓練されたエンコーダを、リッチなセマンティックな特徴を抽出するために、プライベートデータセットに転送する。
2つのデコーダは、現在の脳腫瘍を共同に分断し、将来の腫瘍再発位置を予測するために構築されている。
論文 参考訳(メタデータ) (2023-04-11T02:45:38Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
がんを研究・治療するための計算予測モデルをエクスプロイトすることは、薬物開発の改善と治療計画のパーソナライズドデザインにおいて大きな可能性を秘めている。
最近の研究の波は、ディープラーニング手法を用いて、薬物治療に対するがん反応を予測するという有望な結果を示している。
このレビューは、この分野の現状をよりよく理解し、主要な課題と将来性のあるソリューションパスを特定します。
論文 参考訳(メタデータ) (2022-11-18T03:26:31Z) - RadioPathomics: Multimodal Learning in Non-Small Cell Lung Cancer for
Adaptive Radiotherapy [1.8161758803237067]
非小細胞肺癌に対する放射線治療成績を予測するため, マルチモーダルレイトフュージョン法を開発した。
実験により、AUCが90.9%ドルと同等のマルチモーダルパラダイムが、各ユニモーダルアプローチより優れていることが示された。
論文 参考訳(メタデータ) (2022-04-26T16:32:52Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
6大陸にわたる71の医療機関のデータを含む,これまでで最大のフェデレーテッドML研究の結果を報告する。
グリオ芽腫の稀な疾患に対する腫瘍境界自動検出装置を作製した。
当科では, 外科的に標的とした腫瘍の悪性度を高めるために, 33%の改善率を示し, 腫瘍全体に対する23%の改善率を示した。
論文 参考訳(メタデータ) (2022-04-22T17:27:00Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。