論文の概要: Functional relevance based on the continuous Shapley value
- arxiv url: http://arxiv.org/abs/2411.18575v1
- Date: Wed, 27 Nov 2024 18:20:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:28:51.310642
- Title: Functional relevance based on the continuous Shapley value
- Title(参考訳): 連続シェープ値に基づく機能的関連性
- Authors: Pedro Delicado, Cristian Pachón-García,
- Abstract要約: この研究は、関数データに基づく予測モデルの解釈可能性に焦点を当てる。
連続ゲームにおけるShapley値に基づく解釈可能性手法を提案する。
この手法は、シミュレーションおよび実データを用いた一連の実験を通して説明される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The presence of Artificial Intelligence (AI) in our society is increasing, which brings with it the need to understand the behaviour of AI mechanisms, including machine learning predictive algorithms fed with tabular data, text, or images, among other types of data. This work focuses on interpretability of predictive models based on functional data. Designing interpretability methods for functional data models implies working with a set of features whose size is infinite. In the context of scalar on function regression, we propose an interpretability method based on the Shapley value for continuous games, a mathematical formulation that allows to fairly distribute a global payoff among a continuous set players. The method is illustrated through a set of experiments with simulated and real data sets. The open source Python package ShapleyFDA is also presented.
- Abstract(参考訳): 私たちの社会における人工知能(AI)の存在は増加しており、表データ、テキスト、画像などの種類のデータによって供給される機械学習予測アルゴリズムなど、AIメカニズムの振る舞いを理解する必要がある。
この研究は、関数データに基づく予測モデルの解釈可能性に焦点を当てる。
関数型データモデルの解釈可能性メソッドの設計は、サイズが無限である一連の機能を扱うことを意味する。
関数レグレッションにおけるスカラーの文脈において,連続ゲームに対するShapley値に基づく解釈可能性法を提案し,連続的なセットプレーヤ間でグローバルなペイオフを公平に分配できる数学的定式化を提案する。
この手法は、シミュレーションおよび実データを用いた一連の実験を通して説明される。
オープンソースのPythonパッケージであるShapleyFDAも紹介されている。
関連論文リスト
- Logistic-beta processes for dependent random probabilities with beta marginals [58.91121576998588]
本稿では,ロジスティック・ベータプロセスと呼ばれる新しいプロセスを提案する。
空間や時間などの離散領域と連続領域の両方への依存をモデル化でき、相関カーネルを通じて柔軟な依存構造を持つ。
本研究は,非パラメトリック二分回帰と条件密度推定の例による効果をシミュレーション研究と妊娠結果応用の両方で説明する。
論文 参考訳(メタデータ) (2024-02-10T21:41:32Z) - Variational Shapley Network: A Probabilistic Approach to Self-Explaining
Shapley values with Uncertainty Quantification [2.6699011287124366]
シェープ価値は、モデル決定プロセスの解明のための機械学習(ML)の基礎ツールとして現れている。
本稿では,Shapley値の計算を大幅に単純化し,単一のフォワードパスしか必要としない,新しい自己説明手法を提案する。
論文 参考訳(メタデータ) (2024-02-06T18:09:05Z) - FIND: A Function Description Benchmark for Evaluating Interpretability
Methods [86.80718559904854]
本稿では,自動解釈可能性評価のためのベンチマークスイートであるFIND(Function Interpretation and Description)を紹介する。
FINDには、トレーニングされたニューラルネットワークのコンポーネントに似た機能と、私たちが生成しようとしている種類の記述が含まれています。
本研究では、事前訓練された言語モデルを用いて、自然言語とコードにおける関数の振る舞いの記述を生成する手法を評価する。
論文 参考訳(メタデータ) (2023-09-07T17:47:26Z) - Stability for Inference with Persistent Homology Rank Functions [0.0]
我々は統計学と機械学習のツールとして、永続的ホモロジーランク関数を再考する。
階数関数によって捕捉される永続的ホモロジーの使用は、既存の非永続的アプローチよりも明らかな改善をもたらす。
論文 参考訳(メタデータ) (2023-07-06T10:34:52Z) - Explaining Predictive Uncertainty with Information Theoretic Shapley
Values [6.49838460559032]
我々は、様々な種類の予測の不確実性を説明するために、人気のShapley値フレームワークを適用します。
我々は,実データおよびシミュレーションデータに対して,様々な実験でよく動作する効率的なアルゴリズムを実装した。
論文 参考訳(メタデータ) (2023-06-09T07:43:46Z) - An Entropy-Based Model for Hierarchical Learning [3.1473798197405944]
実世界のデータセットに共通する特徴は、データドメインがマルチスケールであることである。
本稿では,このマルチスケールデータ構造を利用した学習モデルを提案する。
階層的な学習モデルは、人間の論理的かつ進歩的な学習メカニズムにインスパイアされている。
論文 参考訳(メタデータ) (2022-12-30T13:14:46Z) - A Functional Information Perspective on Model Interpretation [30.101107406343665]
この研究は、モデル解釈可能性の理論的な枠組みを示唆している。
機能的フィッシャー情報によって機能的エントロピーを束縛する対数ソボレフの不等式に依存している。
提案手法は,様々なデータ信号に対する既存の解釈可能性サンプリング手法を超越していることを示す。
論文 参考訳(メタデータ) (2022-06-12T09:24:45Z) - Learning Summary Statistics for Bayesian Inference with Autoencoders [58.720142291102135]
我々は,ディープニューラルネットワークに基づくオートエンコーダの内部次元を要約統計として利用する。
パラメータ関連情報を全て符号化するエンコーダのインセンティブを作成するため,トレーニングデータの生成に使用した暗黙的情報にデコーダがアクセスできるようにする。
論文 参考訳(メタデータ) (2022-01-28T12:00:31Z) - Learning outside the Black-Box: The pursuit of interpretable models [78.32475359554395]
本稿では,任意の連続ブラックボックス関数の連続的大域的解釈を生成するアルゴリズムを提案する。
我々の解釈は、その芸術の以前の状態から飛躍的な進歩を表している。
論文 参考訳(メタデータ) (2020-11-17T12:39:44Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
統計モデルから特定可能な関数として生じる対象関数の統計的機械学習のための新しい枠組みを提案する。
このフレームワークは問題とモデルに依存しないものであり、応用統計学における幅広い対象パラメータを推定するのに使用できる。
我々は、部分的に観測されていない情報を持つランダム/二重ロバストな問題において、いわゆる粗大化に特に焦点をあてた。
論文 参考訳(メタデータ) (2020-08-14T16:48:29Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
与えられた観測データから数学的方程式を発見するアルゴリズムについて述べる。
このアルゴリズムは遺伝的プログラミングとスパース回帰を組み合わせたものである。
解析方程式の発見や偏微分方程式(PDE)の発見にも用いられる。
論文 参考訳(メタデータ) (2020-04-03T17:21:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。