論文の概要: Visual SLAMMOT Considering Multiple Motion Models
- arxiv url: http://arxiv.org/abs/2411.19134v1
- Date: Thu, 28 Nov 2024 13:36:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:21:35.706715
- Title: Visual SLAMMOT Considering Multiple Motion Models
- Title(参考訳): 複数の動きモデルを考慮した視覚的SLAMMOT
- Authors: Peilin Tian, Hao Li,
- Abstract要約: 本稿では,この手法を視覚的SLAMMOTとして実現する可能性とメリットについて検討する。
複数の動きモデルを考慮した視覚SLAMMOTの解を提案し、視覚領域におけるIMM-SLAMMOTの固有の利点を検証した。
- 参考スコア(独自算出の注目度): 6.221851249300585
- License:
- Abstract: Simultaneous Localization and Mapping (SLAM) and Multi-Object Tracking (MOT) are pivotal tasks in the realm of autonomous driving, attracting considerable research attention. While SLAM endeavors to generate real-time maps and determine the vehicle's pose in unfamiliar settings, MOT focuses on the real-time identification and tracking of multiple dynamic objects. Despite their importance, the prevalent approach treats SLAM and MOT as independent modules within an autonomous vehicle system, leading to inherent limitations. Classical SLAM methodologies often rely on a static environment assumption, suitable for indoor rather than dynamic outdoor scenarios. Conversely, conventional MOT techniques typically rely on the vehicle's known state, constraining the accuracy of object state estimations based on this prior. To address these challenges, previous efforts introduced the unified SLAMMOT paradigm, yet primarily focused on simplistic motion patterns. In our team's previous work IMM-SLAMMOT\cite{IMM-SLAMMOT}, we present a novel methodology incorporating consideration of multiple motion models into SLAMMOT i.e. tightly coupled SLAM and MOT, demonstrating its efficacy in LiDAR-based systems. This paper studies feasibility and advantages of instantiating this methodology as visual SLAMMOT, bridging the gap between LiDAR and vision-based sensing mechanisms. Specifically, we propose a solution of visual SLAMMOT considering multiple motion models and validate the inherent advantages of IMM-SLAMMOT in the visual domain.
- Abstract(参考訳): 複数物体追跡(MOT)とSLAMは、自律運転の領域において重要なタスクであり、かなりの研究の注目を集めている。
SLAMは、リアルタイムマップを生成し、不慣れな設定で車両のポーズを決定する努力をしながら、MOTは複数の動的オブジェクトのリアルタイム識別と追跡に重点を置いている。
その重要性にもかかわらず、一般的なアプローチはSLAMとMOTを自律走行車システム内の独立したモジュールとして扱い、固有の制限をもたらす。
古典的なSLAM手法は、動的屋外シナリオよりも屋内に適した静的環境仮定に依存していることが多い。
逆に、従来のMOT技術は一般に車両の既知の状態に依存しており、それに基づくオブジェクト状態推定の精度を制限している。
これらの課題に対処するため、従来の取り組みではSLAMMOTパラダイムを導入していたが、主に単純な動きパターンに焦点を当てていた。
チームのこれまでの IMM-SLAMMOT\cite{IMM-SLAMMOT} では,複数の動きモデルをSLAMMOT,すなわち密結合SLAMとMOTに組み込んだ新しい手法を提案する。
本稿では、この手法を視覚SLAMMOTとして実現し、LiDARと視覚に基づく検知機構のギャップを埋める可能性と利点について検討する。
具体的には、複数の動きモデルを考慮した視覚SLAMMOTの解を提案し、視覚領域におけるIMM-SLAMMOTの固有の利点を検証した。
関連論文リスト
- 3D Multi-Object Tracking with Semi-Supervised GRU-Kalman Filter [6.13623925528906]
3D Multi-Object Tracking (MOT)は、自律運転やロボットセンシングのようなインテリジェントなシステムに不可欠である。
本稿では,学習可能なカルマンフィルタを移動モジュールに導入するGRUベースのMOT法を提案する。
このアプローチは、データ駆動学習を通じてオブジェクトの動き特性を学習することができ、手動モデル設計やモデルエラーを回避することができる。
論文 参考訳(メタデータ) (2024-11-13T08:34:07Z) - MambaTrack: A Simple Baseline for Multiple Object Tracking with State Space Model [18.607106274732885]
我々は、MTP(Mamba moTion Predictor)という、マンバをベースとしたモーションモデルを導入する。
MTPは、物体の時空間的位置ダイナミクスを入力として、バイマンバ符号化層を用いて動きパターンをキャプチャし、次の動きを予測する。
提案するトラッカーであるMambaTrackは、DancetrackやSportsMOTなどのベンチマークで高度なパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-08-17T11:58:47Z) - Reliable Object Tracking by Multimodal Hybrid Feature Extraction and Transformer-Based Fusion [18.138433117711177]
本稿では,信頼度の高い単一オブジェクト追跡にフレームイベントベースのデータを利用する新しいマルチモーダルハイブリッドトラッカー(MMHT)を提案する。
MMHTモデルは、人工ニューラルネットワーク(ANN)とスパイクニューラルネットワーク(SNN)からなるハイブリッドバックボーンを使用して、異なる視覚モードから支配的な特徴を抽出する。
MMHTモデルは,他の最先端手法と比較して,競争性能を示すことを示した。
論文 参考訳(メタデータ) (2024-05-28T07:24:56Z) - Probing Multimodal LLMs as World Models for Driving [72.18727651074563]
自律運転におけるMLLM(Multimodal Large Language Models)の適用について検討する。
GPT-4oのようなモデルの開発は進んでいるが、複雑な運転環境における性能は未解明のままである。
論文 参考訳(メタデータ) (2024-05-09T17:52:42Z) - Delving into Multi-modal Multi-task Foundation Models for Road Scene Understanding: From Learning Paradigm Perspectives [56.2139730920855]
本稿では,道路シーンに特化して設計されたMM-VUFMの系統解析について述べる。
本研究の目的は,タスク特化モデル,統合マルチモーダルモデル,統合マルチタスクモデル,基礎モデル推進技術など,共通プラクティスの包括的概要を提供することである。
我々は、クローズドループ駆動システム、解釈可能性、エンボディドドライブエージェント、世界モデルなど、重要な課題と今後のトレンドに関する洞察を提供する。
論文 参考訳(メタデータ) (2024-02-05T12:47:09Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
大規模言語モデル(LLM)は、文脈理解、論理的推論、回答生成などの能力を示した。
本稿では,自動走行のための大規模言語モデル (LLM4AD) に関する研究ラインを体系的にレビューする。
論文 参考訳(メタデータ) (2023-11-02T07:23:33Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
複数物体追跡(MOT)は、自律運転における知覚システムの基本的構成要素である。
運転システムの安全性の追求にもかかわらず、テスト時間条件における領域シフトに対するMOT適応問題に対する解決策は提案されていない。
我々はMOTの総合的なテスト時間適応フレームワークであるDARTHを紹介する。
論文 参考訳(メタデータ) (2023-10-03T10:10:42Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
本研究では,学習可能なモーション予測器を中心に,新しいモーショントラッカーであるMotionTrackを紹介する。
実験結果から、MotionTrackはDancetrackやSportsMOTといったデータセット上での最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-06-05T04:24:11Z) - MOTSLAM: MOT-assisted monocular dynamic SLAM using single-view depth
estimation [5.33931801679129]
MOTSLAMは動的ビジュアルSLAMシステムであり、動的オブジェクトのポーズとバウンディングボックスの両方を追跡する単分子構成を持つ。
KITTIデータセットを用いた実験により,カメラのエゴモーションとモノラルな動的SLAMでの物体追跡の両方において,我々のシステムが最高の性能を示した。
論文 参考訳(メタデータ) (2022-10-05T06:07:10Z) - Det-SLAM: A semantic visual SLAM for highly dynamic scenes using
Detectron2 [0.0]
本研究では,視覚的SLAMシステムであるORB-SLAM3とディテクトロン2を組み合わせて,Det-SLAMシステムを提案する。
Det-SLAMは従来の動的SLAMシステムよりも弾力性が高く、動的屋内シナリオにおけるカメラ姿勢推定誤差を低減できる。
論文 参考訳(メタデータ) (2022-10-01T13:25:11Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
古典力学の先行概念を機械学習モデルに統合する手法が提案されている。
これらのモデルの現在の機能について、精査する。
連続的および時間的可逆的ダイナミクスの使用は、すべてのクラスのモデルに恩恵をもたらす。
論文 参考訳(メタデータ) (2021-11-09T23:48:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。