論文の概要: Noncommutative Model Selection for Data Clustering and Dimension Reduction Using Relative von Neumann Entropy
- arxiv url: http://arxiv.org/abs/2411.19902v1
- Date: Fri, 29 Nov 2024 18:04:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:21:37.682626
- Title: Noncommutative Model Selection for Data Clustering and Dimension Reduction Using Relative von Neumann Entropy
- Title(参考訳): 相対的フォン・ノイマンエントロピーを用いたデータクラスタリングと次元削減のための非可換モデル選択
- Authors: Araceli Guzmán-Tristán, Antonio Rieser,
- Abstract要約: 教師なし分類と次元削減のためのデータ駆動型アルゴリズムのペアを提案する。
我々の実験では、クラスタリングアルゴリズムは、非自明な幾何学とトポロジを持つデータセット上の$k$-meansクラスタリングよりも優れています。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We propose a pair of completely data-driven algorithms for unsupervised classification and dimension reduction, and we empirically study their performance on a number of data sets, both simulated data in three-dimensions and images from the COIL-20 data set. The algorithms take as input a set of points sampled from a uniform distribution supported on a metric space, the latter embedded in an ambient metric space, and they output a clustering or reduction of dimension of the data. They work by constructing a natural family of graphs from the data and selecting the graph which maximizes the relative von Neumann entropy of certain normalized heat operators constructed from the graphs. Once the appropriate graph is selected, the eigenvectors of the graph Laplacian may be used to reduce the dimension of the data, and clusters in the data may be identified with the kernel of the associated graph Laplacian. Notably, these algorithms do not require information about the size of a neighborhood or the desired number of clusters as input, in contrast to popular algorithms such as $k$-means, and even more modern spectral methods such as Laplacian eigenmaps, among others. In our computational experiments, our clustering algorithm outperforms $k$-means clustering on data sets with non-trivial geometry and topology, in particular data whose clusters are not concentrated around a specific point, and our dimension reduction algorithm is shown to work well in several simple examples.
- Abstract(参考訳): 我々は、教師なし分類と次元削減のための完全なデータ駆動アルゴリズムのペアを提案し、COIL-20データセットからの3次元データと画像の両方でシミュレーションされたデータを含む複数のデータセットでそれらの性能を実証的に研究する。
アルゴリズムは、計量空間に支持された一様分布からサンプリングされた点の集合を入力とし、後者は周囲の計量空間に埋め込まれ、データのクラスタリングや次元の縮小を出力する。
彼らは、データからグラフの自然な族を構築し、グラフから構築された特定の正規化熱作用素の相対的フォン・ノイマンエントロピーを最大化するグラフを選択する。
適切なグラフが選択されると、グラフラプラシアンの固有ベクトルを用いてデータの次元を減らし、データのクラスタを関連するグラフラプラシアンのカーネルと同一視することができる。
特に、これらのアルゴリズムは、$k$-meansのような一般的なアルゴリズムや、ラプラシア固有写像のようなより現代的なスペクトル法とは対照的に、入力として近傍のサイズや所望数のクラスタに関する情報を必要としない。
計算実験では,クラスタリングアルゴリズムは,非自明な幾何やトポロジーを持つデータセット,特にクラスタが特定の点に集中していないデータにおいて,$k$-meansクラスタリングよりも優れており,その次元削減アルゴリズムはいくつかの簡単な例でうまく機能することが示されている。
関連論文リスト
- Diffusion-based Semi-supervised Spectral Algorithm for Regression on Manifolds [2.0649432688817444]
本研究では,高次元データの回帰解析に挑戦する拡散スペクトルアルゴリズムを提案する。
本手法では,熱カーネルの局所的推定特性を用いて,この障害を克服するための適応型データ駆動型アプローチを提案する。
我々のアルゴリズムは完全にデータ駆動方式で動作し、データ固有の多様体構造内で直接動作する。
論文 参考訳(メタデータ) (2024-10-18T15:29:04Z) - Resampling and averaging coordinates on data [1.660242118349614]
点雲上の固有座標を頑健に計算するアルゴリズムを導入する。
候補座標の集合をクラスタリングし、位相データ解析から形状記述子を用いて代表埋め込みのサブセットを同定する。
最終的な出力は、一般化されたProcrustes解析を用いて代表埋め込みの平均として得られる埋め込みである。
論文 参考訳(メタデータ) (2024-08-02T16:37:33Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
教師なし学習は、潜在的に大きな高次元データセットの基盤構造を捉えることを目的としている。
本研究では、最適輸送のレンズの下でこれらのアプローチを再検討し、Gromov-Wasserstein問題と関係を示す。
これにより、分散還元と呼ばれる新しい一般的なフレームワークが公開され、DRとクラスタリングを特別なケースとして回復し、単一の最適化問題内でそれらに共同で対処することができる。
論文 参考訳(メタデータ) (2024-02-03T19:00:19Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - One-step Bipartite Graph Cut: A Normalized Formulation and Its
Application to Scalable Subspace Clustering [56.81492360414741]
両部グラフの1ステップ正規化カットを、特に線形時間複雑性で実施する方法を示す。
本稿では、まず、正規化制約付き一段階二分グラフカット基準を特徴付けるとともに、そのトレース問題に対する等価性を理論的に証明する。
このカット基準を、適応アンカー学習、二部グラフ学習、一段階正規化二部グラフ分割を同時にモデル化するスケーラブルなサブスペースクラスタリングアプローチに拡張する。
論文 参考訳(メタデータ) (2023-05-12T11:27:20Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
平均推定なしで直接データのクラスタを検出する新しいクラスタリングアルゴリズムを提案する。
具体的には,バタワースフィルタを用いてデータ点間の距離行列を構成する。
異なる視点に埋め込まれた相補的な情報をうまく活用するために、テンソルのSchatten p-norm正規化を利用する。
論文 参考訳(メタデータ) (2023-05-12T03:01:41Z) - Skew-Symmetric Adjacency Matrices for Clustering Directed Graphs [5.301300942803395]
カットベースの有向グラフ(グラフ)クラスタリングは、しばしばクラスタ内あるいはクラスタ間の疎結合を見つけることに焦点を当てる。
フローベースのクラスタリングでは、クラスタ間のエッジは一方向を向く傾向にあり、マイグレーションデータ、フードウェブ、トレーディングデータに見出されている。
論文 参考訳(メタデータ) (2022-03-02T20:07:04Z) - Learning Low-Dimensional Nonlinear Structures from High-Dimensional
Noisy Data: An Integral Operator Approach [5.975670441166475]
本研究では,高次元および雑音観測から低次元非線形構造を学習するためのカーネルスペクトル埋め込みアルゴリズムを提案する。
このアルゴリズムは、基礎となる多様体の事前の知識に依存しない適応的な帯域幅選択手順を用いる。
得られた低次元埋め込みは、データ可視化、クラスタリング、予測などの下流目的にさらに活用することができる。
論文 参考訳(メタデータ) (2022-02-28T22:46:34Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
本稿では脳波の分類に欠落したデータを扱うための2つの方法を提案する。
第1のアプローチでは、インプットされたデータと$k$-nearestの隣人アルゴリズムとの共分散を推定し、第2のアプローチでは、期待最大化アルゴリズム内で観測データの可能性を活用することにより、観測データに依存する。
その結果, 提案手法は観測データに基づく分類よりも優れており, 欠落したデータ比が増大しても高い精度を維持することができることがわかった。
論文 参考訳(メタデータ) (2021-10-19T14:24:50Z) - Measuring inter-cluster similarities with Alpha Shape TRIangulation in
loCal Subspaces (ASTRICS) facilitates visualization and clustering of
high-dimensional data [0.0]
高次元(HD)データのクラスタリングと可視化は、様々な分野において重要なタスクである。
HDデータをクラスタリングする最も効果的なアルゴリズムは、グラフ内のノードによってデータを表現することに基づいている。
本稿では,HDデータポイントのクラスタ間の類似性を計測するASTRICSという手法を提案する。
論文 参考訳(メタデータ) (2021-07-15T20:51:06Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。