論文の概要: ONION: Physics-Informed Deep Learning Model for Line Integral Diagnostics Across Fusion Devices
- arxiv url: http://arxiv.org/abs/2412.00087v1
- Date: Wed, 27 Nov 2024 08:15:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 21:11:21.349122
- Title: ONION: Physics-Informed Deep Learning Model for Line Integral Diagnostics Across Fusion Devices
- Title(参考訳): 核融合装置間の線形積分診断のための物理インフォームドディープラーニングモデル
- Authors: Cong Wang, Weizhe Yang, Haiping Wang, Renjie Yang, Jing Li, Zhijun Wang, Xinyao Yu, Yixiong Wei, Xianli Huang, Zhaoyang Liu, Changqing Zou, Zhifeng Zhao,
- Abstract要約: 本稿では,様々なバックボーンネットワークに適用可能な物理インフォームドモデルアーキテクチャを提案する。
このモデルは物理情報を付加的な入力として組み込んでおり、物理インフォームド・ロス関数によって制約される。
物理インフォームド・ロス関数の組み入れにより、モデルの予測を正すことが示されている。
- 参考スコア(独自算出の注目度): 21.39433654532181
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a Physics-Informed model architecture that can be adapted to various backbone networks. The model incorporates physical information as additional input and is constrained by a Physics-Informed loss function. Experimental results demonstrate that the additional input of physical information substantially improve the model's ability with a increase in performance observed. Besides, the adoption of the Softplus activation function in the final two fully connected layers significantly enhances model performance. The incorporation of a Physics-Informed loss function has been shown to correct the model's predictions, bringing the back-projections closer to the actual inputs and reducing the errors associated with inversion algorithms. In this work, we have developed a Phantom Data Model to generate customized line integral diagnostic datasets and have also collected SXR diagnostic datasets from EAST and HL-2A. The code, models, and some datasets are publicly available at https://github.com/calledice/onion.
- Abstract(参考訳): 本稿では,様々なバックボーンネットワークに適用可能な物理インフォームドモデルアーキテクチャを提案する。
このモデルは物理情報を付加的な入力として組み込んでおり、物理インフォームド・ロス関数によって制約される。
実験により,物理情報の付加的な入力により,観測性能が向上し,モデルの能力が大幅に向上することが確認された。
さらに、最後の2つの完全連結層におけるSoftplusアクティベーション関数の採用により、モデル性能が著しく向上する。
物理インフォームド・ロス関数の組み込みはモデルの予測を正し、バックプロジェクションを実際の入力に近づけ、反転アルゴリズムに関連する誤差を減らすことが示されている。
本研究では,独自のライン積分診断データセットを生成するPhantom Data Modelを開発し,EASTとHL-2AからSXR診断データセットを収集した。
コード、モデル、いくつかのデータセットはhttps://github.com/calledice/onion.comで公開されている。
関連論文リスト
- Efficient Federated Learning with Heterogeneous Data and Adaptive Dropout [62.73150122809138]
Federated Learning(FL)は、複数のエッジデバイスを使用したグローバルモデルの協調トレーニングを可能にする、有望な分散機械学習アプローチである。
動的不均一モデルアグリゲーション(FedDH)と適応ドロップアウト(FedAD)の2つの新しい手法を備えたFedDHAD FLフレームワークを提案する。
これら2つの手法を組み合わせることで、FedDHADは精度(最大6.7%)、効率(最大2.02倍高速)、コスト(最大15.0%小型)で最先端のソリューションを大幅に上回っている。
論文 参考訳(メタデータ) (2025-07-14T16:19:00Z) - A Theoretical Perspective: How to Prevent Model Collapse in Self-consuming Training Loops [55.07063067759609]
高品質なデータは大規模な生成モデルのトレーニングには不可欠だが、オンラインで利用可能な実際のデータの膨大な蓄積はほとんど枯渇している。
モデルは、さらなるトレーニングのために独自のデータを生成し、自己消費訓練ループ(STL)を形成する。
一部のモデルは劣化または崩壊するが、他のモデルはこれらの失敗をうまく回避し、理論的な理解にかなりのギャップを残している。
論文 参考訳(メタデータ) (2025-02-26T06:18:13Z) - Hybrid Two-Stage Reconstruction of Multiscale Subsurface Flow with Physics-informed Residual Connected Neural Operator [4.303037819686676]
本稿では,マルチスケール基底関数と物理誘導深層学習を用いてDarcyフロー問題を解決するハイブリッド2段階フレームワークを提案する。
このフレームワークは、基底関数の嵌合と圧力再構成の点で0.9以上のR2値を達成し、残差指標は10-4$のオーダーである。
論文 参考訳(メタデータ) (2025-01-22T23:28:03Z) - SMPLest-X: Ultimate Scaling for Expressive Human Pose and Shape Estimation [81.36747103102459]
表現的人間のポーズと形状推定(EHPS)は、身体、手、顔の動きを多数の応用で統合する。
現在の最先端の手法は、限定されたデータセット上で革新的なアーキテクチャ設計を訓練することに焦点を当てている。
本稿では,EHPSのスケールアップが一般基盤モデルのファミリに与える影響について検討する。
論文 参考訳(メタデータ) (2025-01-16T18:59:46Z) - Mitigating Sycophancy in Decoder-Only Transformer Architectures: Synthetic Data Intervention [4.586907225774023]
本研究はデコーダのみのトランスアーキテクチャに合成データ介入技術を適用した。
以上の結果から,SDIトレーニングモデルでは,精度と薬効率の観点から,SDIトレーニングモデルがサポートできることが示唆された。
論文 参考訳(メタデータ) (2024-11-15T12:59:46Z) - Development and Comparative Analysis of Machine Learning Models for Hypoxemia Severity Triage in CBRNE Emergency Scenarios Using Physiological and Demographic Data from Medical-Grade Devices [0.0]
グラディエントブースティングモデル(GBM)は、トレーニング速度、解釈可能性、信頼性の点で、シーケンシャルモデルを上回った。
タイムリーな介入のために5分間の予測ウィンドウが選択された。
本研究は、トリアージを改善し、アラーム疲労を軽減するMLの可能性を強調した。
論文 参考訳(メタデータ) (2024-10-30T23:24:28Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Physics-integrated generative modeling using attentive planar normalizing flow based variational autoencoder [0.0]
本研究の目的は,物理統合生成モデルにおける再構成の忠実さとノイズの改善である。
モデルに注入されたノイズに対する生成モデルのロバスト性を改善するため,正規化フローベースVAEのエンコーダ部分の変更を提案する。
論文 参考訳(メタデータ) (2024-04-18T15:38:14Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
RetroWISEは,実データから推定されるベースモデルを用いて,シリコン内反応の生成と増大を行うフレームワークである。
3つのベンチマークデータセットで、RetroWISEは最先端モデルに対して最高の全体的なパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-01-31T07:40:37Z) - Derm-T2IM: Harnessing Synthetic Skin Lesion Data via Stable Diffusion
Models for Enhanced Skin Disease Classification using ViT and CNN [1.0499611180329804]
我々は、最近の数発学習の成功を拡大して、拡張されたデータ変換技術を統合することを目指している。
最先端機械学習モデルのトレーニングパイプラインに新たに生成された合成データを組み込むことによる影響について検討する。
論文 参考訳(メタデータ) (2024-01-10T13:46:03Z) - A Physics Enhanced Residual Learning (PERL) Framework for Vehicle Trajectory Prediction [5.7215490229343535]
PERLは、トラフィック状態予測のための物理とデータ駆動方式の長所を統合する。
物理モデルに固有の解釈可能性を保持し、データ要求を減らした。
PERLは、物理モデル、データ駆動モデル、PINNモデルと比較して、小さなデータセットでより良い予測を実現する。
論文 参考訳(メタデータ) (2023-09-26T21:41:45Z) - End-to-end Phase Field Model Discovery Combining Experimentation,
Crowdsourcing, Simulation and Learning [9.763339269757227]
エンド・ツー・エンドのフェーズ・フィールド・モデル探索のためのフェーズ・フィールド・ラボ・プラットフォームを提案する。
Phase-Field-Labは、(i)アノテーション時間を短縮する合理化されたアノテーションツール、(ii)データからフェーズフィールドモデルを自動的に学習するエンドツーエンドのニューラルモデル、(iii)新しいインターフェースと視覚化を組み合わせる。
我々のプラットフォームは極端条件下での材料中のナノ構造進化の解析に利用されている。
論文 参考訳(メタデータ) (2023-09-13T22:44:04Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - Towards a unified nonlocal, peridynamics framework for the
coarse-graining of molecular dynamics data with fractures [6.478834929962051]
MD模擬材料破壊データセットからメソスケール連続体サロゲートとして周辺力学モデルを抽出する学習フレームワークを提案する。
我々の周辺力学シュロゲートモデルは、トレーニングと異なるグリッド解像度の予測タスクに利用できる。
論文 参考訳(メタデータ) (2023-01-11T16:07:17Z) - Deep learning for full-field ultrasonic characterization [7.120879473925905]
本研究では、最近の機械学習の進歩を活用して、物理に基づくデータ分析プラットフォームを構築する。
直接反転と物理インフォームドニューラルネットワーク(PINN)の2つの論理について検討した。
論文 参考訳(メタデータ) (2023-01-06T05:01:05Z) - Machine-Learning Prediction of the Computed Band Gaps of Double
Perovskite Materials [3.2798940914359056]
機能性材料の電子構造の予測は新しい装置の工学に不可欠である。
本研究では,2重ペロブスカイト材料の電子構造を機械学習で予測する。
この結果は,期待できる機能材料を迅速にスクリーニングするために,機械学習による回帰の可能性を実証するという意味で重要である。
論文 参考訳(メタデータ) (2023-01-04T08:19:18Z) - A Physics-informed Diffusion Model for High-fidelity Flow Field
Reconstruction [0.0]
本研究では,高忠実度データのみを使用する拡散モデルを提案する。
異なる構成で、本モデルでは、正規の低忠実度サンプルまたはスパース測定サンプルから高忠実度データを再構成することができる。
本モデルでは, 異なる入力源に基づく2次元乱流の正確な再構成結果が得られるが, 再学習は行わない。
論文 参考訳(メタデータ) (2022-11-26T23:14:18Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - Differentiable physics-enabled closure modeling for Burgers' turbulence [0.0]
本稿では、既知の物理と機械学習を組み合わせて乱流問題に対するクロージャモデルを開発する微分可能な物理パラダイムを用いたアプローチについて論じる。
我々は、モデルの有効性をテストするために、後方損失関数上の様々な物理仮定を組み込んだ一連のモデルを訓練する。
既知物理あるいは既存の閉包アプローチを含む偏微分方程式の形で帰納バイアスを持つ制約モデルが、非常にデータ効率が高く、正確で、一般化可能なモデルを生成することを発見した。
論文 参考訳(メタデータ) (2022-09-23T14:38:01Z) - Deep Physics Corrector: A physics enhanced deep learning architecture
for solving stochastic differential equations [0.0]
微分方程式(SDE)によって制御される物理系に対する新しいグレーボックスモデリングアルゴリズムを提案する。
提案手法はDeep Physics Corrector(DPC)と呼ばれ、SDEとDeep Neural Network(DNN)で表される近似物理学をブレンドする。
本論文では,本論文の4つのベンチマーク例について,提案したDPCの性能について述べる。
論文 参考訳(メタデータ) (2022-09-20T14:30:07Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Semi-supervised physics guided deep learning framework for predicting
the I-V characteristics of GAN HEMT [0.0]
このフレームワークは本質的に汎用的であり、その振る舞いが知られている限り、他の研究分野の現象をモデル化するために適用することができる。
窒化ガリウム系高電子移動トランジスタ(GaN HEMT)のI-V特性を予測する半教師付き物理誘導ニューラルネットワーク(SPGNN)が開発された。
SPGNNは、目に見えない状況であっても、従来のニューラルネットワーク(TNN)と同じような、あるいは優れたパフォーマンスを達成するために、トレーニングデータの要求を80%以上削減する。
論文 参考訳(メタデータ) (2021-10-20T18:48:50Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - FastIF: Scalable Influence Functions for Efficient Model Interpretation
and Debugging [112.19994766375231]
影響関数は、テスト予測のためのトレーニングデータポイントの「影響」を近似する。
fastifは、実行時間を大幅に改善する関数に影響を与えるための、単純な修正セットです。
本実験はモデル解釈とモデル誤差の修正における影響関数の可能性を示す。
論文 参考訳(メタデータ) (2020-12-31T18:02:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。