論文の概要: Physics-Informed Deep Learning Model for Line-integral Diagnostics Across Fusion Devices
- arxiv url: http://arxiv.org/abs/2412.00087v2
- Date: Wed, 05 Feb 2025 11:35:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:24:08.682665
- Title: Physics-Informed Deep Learning Model for Line-integral Diagnostics Across Fusion Devices
- Title(参考訳): 核融合装置間の線形積分診断のための物理インフォームドディープラーニングモデル
- Authors: Cong Wang, Weizhe Yang, Haiping Wang, Renjie Yang, Jing Li, Zhijun Wang, Xinyao Yu, Yixiong Wei, Xianli Huang, Chenshu Hu, Zhaoyang Liu, Changqing Zou, Zhifeng Zhao,
- Abstract要約: 線積分測定による2次元プラズマプロファイルの迅速再構築は核融合において重要である。
本稿では、オニオンと呼ばれる物理インフォームドモデルアーキテクチャを導入し、モデルの性能を向上させる。
- 参考スコア(独自算出の注目度): 20.883836707493213
- License:
- Abstract: Rapid reconstruction of 2D plasma profiles from line-integral measurements is important in nuclear fusion. This paper introduces a physics-informed model architecture called Onion, that can enhance the performance of models and be adapted to various backbone networks. The model under Onion incorporates physical information by a multiplication process and applies the physics-informed loss function according to the principle of line integration. Experimental results demonstrate that the additional input of physical information improves the model's ability, leading to a reduction in the average relative error E_1 between the reconstruction profiles and the target profiles by approximately 52% on synthetic datasets and about 15% on experimental datasets. Furthermore, the implementation of the Softplus activation function in the final two fully connected layers improves model performance. This enhancement results in a reduction in the E_1 by approximately 71% on synthetic datasets and about 27% on experimental datasets. The incorporation of the physics-informed loss function has been shown to correct the model's predictions, bringing the back-projections closer to the actual inputs and reducing the errors associated with inversion algorithms. Besides, we have developed a synthetic data model to generate customized line-integral diagnostic datasets and have also collected soft x-ray diagnostic datasets from EAST and HL-2A. This study achieves reductions in reconstruction errors, and accelerates the development of diagnostic surrogate models in fusion research.
- Abstract(参考訳): 線積分測定による2次元プラズマプロファイルの迅速再構築は核融合において重要である。
本稿では,オニオンと呼ばれる物理インフォームドモデルアーキテクチャを導入し,モデルの性能を高め,様々なバックボーンネットワークに適用する。
オニオンの下のモデルは、乗算処理によって物理情報を取り込んで、線積分の原理に従って物理インフォームド・ロス関数を適用する。
実験結果から, 物理情報の付加入力によりモデルの能力が向上し, 再現プロファイルと対象プロファイルの平均相対誤差E_1が, 合成データセットで約52%, 実験データセットで約15%減少することがわかった。
さらに、最後の2つの完全連結層におけるSoftplusアクティベーション関数の実装により、モデル性能が向上する。
この強化により、合成データセットで約71%、実験データセットで約27%のE_1が減少する。
物理インフォームド・ロス関数の組み込みはモデルの予測を補正し、実際の入力にバックプロジェクションを近づけ、反転アルゴリズムに関連する誤差を減らすことが示されている。
さらに,線積分診断データセットをカスタマイズした合成データモデルを開発し,EASTとHL-2Aから軟X線診断データセットを収集した。
本研究は, 再構成誤差の低減を実現し, 核融合実験における診断代理モデルの開発を加速させる。
関連論文リスト
- Mitigating Sycophancy in Decoder-Only Transformer Architectures: Synthetic Data Intervention [4.586907225774023]
本研究はデコーダのみのトランスアーキテクチャに合成データ介入技術を適用した。
以上の結果から,SDIトレーニングモデルでは,精度と薬効率の観点から,SDIトレーニングモデルがサポートできることが示唆された。
論文 参考訳(メタデータ) (2024-11-15T12:59:46Z) - Development and Comparative Analysis of Machine Learning Models for Hypoxemia Severity Triage in CBRNE Emergency Scenarios Using Physiological and Demographic Data from Medical-Grade Devices [0.0]
グラディエントブースティングモデル(GBM)は、トレーニング速度、解釈可能性、信頼性の点で、シーケンシャルモデルを上回った。
タイムリーな介入のために5分間の予測ウィンドウが選択された。
本研究は、トリアージを改善し、アラーム疲労を軽減するMLの可能性を強調した。
論文 参考訳(メタデータ) (2024-10-30T23:24:28Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
RetroWISEは,実データから推定されるベースモデルを用いて,シリコン内反応の生成と増大を行うフレームワークである。
3つのベンチマークデータセットで、RetroWISEは最先端モデルに対して最高の全体的なパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-01-31T07:40:37Z) - Derm-T2IM: Harnessing Synthetic Skin Lesion Data via Stable Diffusion
Models for Enhanced Skin Disease Classification using ViT and CNN [1.0499611180329804]
我々は、最近の数発学習の成功を拡大して、拡張されたデータ変換技術を統合することを目指している。
最先端機械学習モデルのトレーニングパイプラインに新たに生成された合成データを組み込むことによる影響について検討する。
論文 参考訳(メタデータ) (2024-01-10T13:46:03Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - Towards a unified nonlocal, peridynamics framework for the
coarse-graining of molecular dynamics data with fractures [6.478834929962051]
MD模擬材料破壊データセットからメソスケール連続体サロゲートとして周辺力学モデルを抽出する学習フレームワークを提案する。
我々の周辺力学シュロゲートモデルは、トレーニングと異なるグリッド解像度の予測タスクに利用できる。
論文 参考訳(メタデータ) (2023-01-11T16:07:17Z) - Deep learning for full-field ultrasonic characterization [7.120879473925905]
本研究では、最近の機械学習の進歩を活用して、物理に基づくデータ分析プラットフォームを構築する。
直接反転と物理インフォームドニューラルネットワーク(PINN)の2つの論理について検討した。
論文 参考訳(メタデータ) (2023-01-06T05:01:05Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。