Train Once for All: A Transitional Approach for Efficient Aspect Sentiment Triplet Extraction
- URL: http://arxiv.org/abs/2412.00208v2
- Date: Fri, 07 Feb 2025 12:12:16 GMT
- Title: Train Once for All: A Transitional Approach for Efficient Aspect Sentiment Triplet Extraction
- Authors: Xinmeng Hou, Lingyue Fu, Chenhao Meng, Kounianhua Du, Wuqi Wang, Hai Hu,
- Abstract summary: We propose the first transition-based model for AOPE and ASTE that performs aspect and opinion extraction jointly.<n>By integrating contrastive-augmented optimization, our model delivers more accurate action predictions.<n>Our model achieves the best performance on both ASTE and AOPE if trained on combined datasets.
- Score: 4.372906783600122
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aspect-Opinion Pair Extraction (AOPE) and Aspect Sentiment Triplet Extraction (ASTE) have drawn growing attention in NLP. However, most existing approaches extract aspects and opinions independently, optionally adding pairwise relations, often leading to error propagation and high time complexity. To address these challenges and being inspired by transition-based dependency parsing, we propose the first transition-based model for AOPE and ASTE that performs aspect and opinion extraction jointly, which also better captures position-aware aspect-opinion relations and mitigates entity-level bias. By integrating contrastive-augmented optimization, our model delivers more accurate action predictions and jointly optimizes separate subtasks in linear time. Extensive experiments on 4 commonly used ASTE/AOPE datasets show that, while performing worse when trained on a single dataset than some previous models, our model achieves the best performance on both ASTE and AOPE if trained on combined datasets, outperforming the strongest previous models in F1-measures (often by a large margin). We hypothesize that this is due to our model's ability to learn transition actions from multiple datasets and domains. Our code is available at https://anonymous.4open.science/r/trans_aste-8FCF.
Related papers
- Improving General Text Embedding Model: Tackling Task Conflict and Data Imbalance through Model Merging [33.23758947497205]
Advanced embedding models are typically developed using large-scale multi-task data and joint training across multiple tasks.
To overcome these challenges, we explore model merging-a technique that combines independently trained models to mitigate gradient conflicts and balance data distribution.
We introduce a novel method, Self Positioning, which efficiently searches for optimal model combinations within the space of task vectors using gradient descent.
arXiv Detail & Related papers (2024-10-19T08:39:21Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - Sample Enrichment via Temporary Operations on Subsequences for Sequential Recommendation [15.718287580146272]
We propose a novel model-agnostic and highly generic framework for sequential recommendation called sample enrichment via temporary operations on subsequences (SETO)
We highlight our SETO's effectiveness and versatility over multiple representative and state-of-the-art sequential recommendation models across multiple real-world datasets.
arXiv Detail & Related papers (2024-07-25T06:22:08Z) - Weak Reward Model Transforms Generative Models into Robust Causal Event Extraction Systems [17.10762463903638]
We train evaluation models to approximate human evaluation, achieving high agreement.
We propose a weak-to-strong supervision method that uses a fraction of the annotated data to train an evaluation model.
arXiv Detail & Related papers (2024-06-26T10:48:14Z) - PEneo: Unifying Line Extraction, Line Grouping, and Entity Linking for End-to-end Document Pair Extraction [28.205723817300576]
Document pair extraction aims to identify key and value entities as well as their relationships from visually-rich documents.
Most existing methods divide it into two separate tasks: semantic entity recognition (SER) and relation extraction (RE)
This paper introduces a novel framework, PEneo, which performs document pair extraction in a unified pipeline.
arXiv Detail & Related papers (2024-01-07T12:48:07Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training [44.790636524264]
Point Prompt Training is a novel framework for multi-dataset synergistic learning in the context of 3D representation learning.
It can overcome the negative transfer associated with synergistic learning and produce generalizable representations.
It achieves state-of-the-art performance on each dataset using a single weight-shared model with supervised multi-dataset training.
arXiv Detail & Related papers (2023-08-18T17:59:57Z) - Feature Decoupling-Recycling Network for Fast Interactive Segmentation [79.22497777645806]
Recent interactive segmentation methods iteratively take source image, user guidance and previously predicted mask as the input.
We propose the Feature Decoupling-Recycling Network (FDRN), which decouples the modeling components based on their intrinsic discrepancies.
arXiv Detail & Related papers (2023-08-07T12:26:34Z) - Mutually Guided Few-shot Learning for Relational Triple Extraction [10.539566491939844]
Mutually Guided Few-shot learning framework for Triple Extraction (MG-FTE)
Our method consists of an entity-guided relation-decoder to classify relations and a proto-decoder to extract entities.
Our method outperforms many state-of-the-art methods by 12.6 F1 score on FewRel 1.0 (single domain) and 20.5 F1 score on FewRel 2.0 (cross-domain)
arXiv Detail & Related papers (2023-06-23T06:15:54Z) - Single-Stage Visual Relationship Learning using Conditional Queries [60.90880759475021]
TraCQ is a new formulation for scene graph generation that avoids the multi-task learning problem and the entity pair distribution.
We employ a DETR-based encoder-decoder conditional queries to significantly reduce the entity label space as well.
Experimental results show that TraCQ not only outperforms existing single-stage scene graph generation methods, it also beats many state-of-the-art two-stage methods on the Visual Genome dataset.
arXiv Detail & Related papers (2023-06-09T06:02:01Z) - Mitigating Representation Bias in Action Recognition: Algorithms and
Benchmarks [76.35271072704384]
Deep learning models perform poorly when applied to videos with rare scenes or objects.
We tackle this problem from two different angles: algorithm and dataset.
We show that the debiased representation can generalize better when transferred to other datasets and tasks.
arXiv Detail & Related papers (2022-09-20T00:30:35Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
We propose co-finetuning -- simultaneously training a single model on multiple upstream'' and downstream'' tasks.
We demonstrate that co-finetuning outperforms traditional transfer learning when using the same total amount of data.
We also show how we can easily extend our approach to multiple upstream'' datasets to further improve performance.
arXiv Detail & Related papers (2022-07-08T10:25:47Z) - OneRel:Joint Entity and Relation Extraction with One Module in One Step [42.576188878294886]
Joint entity and relation extraction is an essential task in natural language processing and knowledge graph construction.
We propose a novel joint entity and relation extraction model, named OneRel, which casts joint extraction as a fine-grained triple classification problem.
arXiv Detail & Related papers (2022-03-10T15:09:59Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Learning Iterative Robust Transformation Synchronization [71.73273007900717]
We propose to use graph neural networks (GNNs) to learn transformation synchronization.
In this work, we avoid handcrafting robust loss functions, and propose to use graph neural networks (GNNs) to learn transformation synchronization.
arXiv Detail & Related papers (2021-11-01T07:03:14Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.