論文の概要: ACTISM: Threat-informed Dynamic Security Modelling for Automotive Systems
- arxiv url: http://arxiv.org/abs/2412.00416v2
- Date: Mon, 27 Jan 2025 12:01:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:49:44.497777
- Title: ACTISM: Threat-informed Dynamic Security Modelling for Automotive Systems
- Title(参考訳): ACTISM: 自動車システムに対する脅威インフォームド動的セキュリティモデリング
- Authors: Shaofei Huang, Christopher M. Poskitt, Lwin Khin Shar,
- Abstract要約: 複雑なサイバー物理システムにおけるサイバーセキュリティの脅威は、システム機能と安全性に重大なリスクをもたらす。
本稿では,自動車システムのレジリエンスを高めるためのセキュリティモデリング手法ACTISMを紹介する。
我々は、Tesla Electric Vehicleの車載インフォテインメントシステムの実例に適用することで、ACTISMの有効性を実証する。
- 参考スコア(独自算出の注目度): 7.3347982474177185
- License:
- Abstract: Cybersecurity threats in complex cyber-physical systems pose significant risks to system functionality and safety. This experience report introduces ACTISM (Automotive Consequence-Driven and Threat-Informed Security Modelling), an integrated security modeling approach that enhances the resilience of automotive systems by dynamically updating their cybersecurity posture in response to prevailing threats, attacker tactics, and their impact on system functionality and safety. ACTISM addresses the existing knowledge gap in static security assessment methodologies by providing a dynamic and iterative framework. We demonstrate the effectiveness of ACTISM by applying it to a real-world example of the Tesla Electric Vehicle's In-Vehicle Infotainment system, illustrating how the security model can be adapted as new threats emerge. We also outline avenues for future research and development in this area, including automated vulnerability management workflows for automotive systems.
- Abstract(参考訳): 複雑なサイバー物理システムにおけるサイバーセキュリティの脅威は、システム機能と安全性に重大なリスクをもたらす。
この経験報告では、ACTISM (Automotive Consequence-Driven and Threat-Informed Security Modelling) が紹介されている。ACTISM(Automotive Consequence-Driven and Threat-Informed Security Modelling)は、一般的な脅威、攻撃戦術、システム機能と安全性への影響に応じて、彼らのサイバーセキュリティ姿勢を動的に更新することで、自動車システムのレジリエンスを高める統合セキュリティモデリングアプローチである。
ACTISMは動的かつ反復的なフレームワークを提供することにより、静的セキュリティ評価方法論における既存の知識ギャップに対処する。
我々は、Tesla Electric VehicleのIn-Vehicle Infotainmentシステムの実例に適用することで、ACTISMの有効性を実証し、新しい脅威が出現するにつれて、セキュリティモデルがどのように適応できるかを説明する。
また、自動車システムのための自動脆弱性管理ワークフローを含む、この分野における今後の研究開発の道筋についても概説する。
関連論文リスト
- SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
MFM(Multimodal foundation model)は、人工知能の大幅な進歩を表す。
本稿では,マルチモーダル学習におけるサイバーセーフティとサイバーセキュリティを概念化する。
我々は、これらの概念をMFMに統一し、重要な脅威を特定するための総合的知識体系化(SoK)を提案する。
論文 参考訳(メタデータ) (2024-11-17T23:06:20Z) - A Formal Framework for Assessing and Mitigating Emergent Security Risks in Generative AI Models: Bridging Theory and Dynamic Risk Mitigation [0.3413711585591077]
大規模言語モデル(LLM)や拡散モデルを含む生成AIシステムが急速に進歩するにつれ、その採用が増加し、新たな複雑なセキュリティリスクがもたらされた。
本稿では,これらの突発的なセキュリティリスクを分類・緩和するための新しい形式的枠組みを提案する。
我々は、潜時空間利用、マルチモーダル・クロスアタック・ベクター、フィードバックループによるモデル劣化など、未探索のリスクを特定した。
論文 参考訳(メタデータ) (2024-10-15T02:51:32Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal [0.0]
本稿では,従来のシステムにおけるリスク評価手法のようなツールを用いたリスク評価プロセスを提案する。
我々は、潜在的な脅威要因を特定し、脆弱性要因に対して依存するシステムコンポーネントをマッピングするためのシナリオ分析を行う。
3つの主要株主グループに対する脅威もマップ化しています。
論文 参考訳(メタデータ) (2024-03-20T05:17:22Z) - Asset-centric Threat Modeling for AI-based Systems [7.696807063718328]
本稿では、AI関連資産、脅威、対策、残留リスクの定量化のためのアプローチおよびツールであるThreatFinderAIを提案する。
このアプローチの実用性を評価するため、参加者はAIベースのヘルスケアプラットフォームのサイバーセキュリティ専門家によって開発された脅威モデルを再現するよう命じられた。
全体として、ソリューションのユーザビリティはよく認識され、脅威の識別とリスクの議論を効果的にサポートする。
論文 参考訳(メタデータ) (2024-03-11T08:40:01Z) - A Cybersecurity Risk Analysis Framework for Systems with Artificial
Intelligence Components [0.0]
欧州連合人工知能法、NIST人工知能リスク管理フレームワーク、および関連する規範の導入は、人工知能コンポーネントを持つシステムを評価するために、新しいリスク分析アプローチをよりよく理解し実装することを要求する。
本稿では,このようなシステムの評価を支援するサイバーセキュリティリスク分析フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-03T09:06:39Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
安全保証ケース(SAC)は、システムの進化中に維持することが困難である。
本稿では,ソフトウェアトレーサビリティを活用して,関連するシステムアーチファクトを安全解析モデルに接続する手法を提案する。
安全ステークホルダーがシステム変更が安全性に与える影響を分析するのに役立つように、システム変更の合理性を設計する。
論文 参考訳(メタデータ) (2023-07-14T16:03:27Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - Towards Safer Generative Language Models: A Survey on Safety Risks,
Evaluations, and Improvements [76.80453043969209]
本調査では,大規模モデルに関する安全研究の枠組みについて述べる。
まず、広範囲にわたる安全問題を導入し、その後、大型モデルの安全性評価手法を掘り下げる。
トレーニングからデプロイメントまで,大規模なモデルの安全性を高めるための戦略について検討する。
論文 参考訳(メタデータ) (2023-02-18T09:32:55Z) - Safety Analysis of Autonomous Driving Systems Based on Model Learning [16.38592243376647]
自律運転システム(ADS)の安全性解析のための実用的検証手法を提案する。
主なアイデアは、指定されたトラフィックシナリオにおけるADSの振る舞いを定量的に描写する代理モデルを構築することである。
文献における最先端ADSの安全性特性を評価することによって,提案手法の有用性を実証する。
論文 参考訳(メタデータ) (2022-11-23T06:52:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。