論文の概要: ANALYSE -- Learning to Attack Cyber-Physical Energy Systems With
Intelligent Agents
- arxiv url: http://arxiv.org/abs/2305.09476v1
- Date: Fri, 21 Apr 2023 11:36:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-21 11:04:33.326078
- Title: ANALYSE -- Learning to Attack Cyber-Physical Energy Systems With
Intelligent Agents
- Title(参考訳): 分析 - インテリジェントエージェントによるサイバー物理エネルギーシステム攻撃のための学習
- Authors: Thomas Wolgast, Nils Wenninghoff, Stephan Balduin, Eric Veith, Bastian
Fraune, Torben Woltjen, Astrid Nie{\ss}e
- Abstract要約: ANALYSEは、学習エージェントがサイバー物理エネルギーシステムにおける攻撃を自律的に見つけることができる機械学習ベースのソフトウェアスイートである。
未知の攻撃タイプを見つけ、科学文献から多くの既知のサイバー物理エネルギーシステムの攻撃戦略を再現するように設計されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ongoing penetration of energy systems with information and communications
technology (ICT) and the introduction of new markets increase the potential for
malicious or profit-driven attacks that endanger system stability. To ensure
security-of-supply, it is necessary to analyze such attacks and their
underlying vulnerabilities, to develop countermeasures and improve system
design. We propose ANALYSE, a machine-learning-based software suite to let
learning agents autonomously find attacks in cyber-physical energy systems,
consisting of the power system, ICT, and energy markets. ANALYSE is a modular,
configurable, and self-documenting framework designed to find yet unknown
attack types and to reproduce many known attack strategies in cyber-physical
energy systems from the scientific literature.
- Abstract(参考訳): 情報通信技術(ict)によるエネルギーシステムの継続的な普及と新しい市場の導入は、システムの安定性を脅かす悪質または利益主導の攻撃の可能性を高める。
供給のセキュリティを確保するためには、そのような攻撃とその基盤となる脆弱性を分析し、対策を開発し、システム設計を改善する必要がある。
我々は,学習エージェントが電力システム,ICT,エネルギー市場で構成されるサイバー物理エネルギーシステムにおいて,自律的に攻撃を見つけることができる機械学習ベースのソフトウェアスイートANALYSEを提案する。
ANALYSEは、未知の攻撃タイプを見つけ、科学文献からサイバー物理エネルギーシステムにおける既知の攻撃戦略を再現するために設計されたモジュラーで構成可能で自己文書化フレームワークである。
関連論文リスト
- Intelligent Attacks on Cyber-Physical Systems and Critical Infrastructures [0.0]
この章は、サイバー物理システムと重要なインフラにおける攻撃の進化の状況の概要を提供する。
人工知能(AI)アルゴリズムによるインテリジェントなサイバーアタックの開発の可能性を強調している。
論文 参考訳(メタデータ) (2025-01-22T09:54:58Z) - Modern Hardware Security: A Review of Attacks and Countermeasures [1.7265013728931]
本稿では,現代コンピューティングシステムにおける脆弱性と緩和戦略の現状を概観する。
本稿では、キャッシュサイドチャネル攻撃(SpectreやMeltdownなど)、パワーサイドチャネル攻撃(Simple Power Analysisなど)、電圧グリッチや電磁解析といった高度な技術について議論する。
論文はRISC-Vアーキテクチャのユニークなセキュリティ課題の分析から締めくくっている。
論文 参考訳(メタデータ) (2025-01-08T10:14:19Z) - Countering Autonomous Cyber Threats [40.00865970939829]
ファンデーションモデルは、サイバードメイン内で広く、特に二元的関心事を提示します。
近年の研究では、これらの先進的なモデルが攻撃的なサイバースペース操作を通知または独立に実行する可能性を示している。
この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を倒す防御メカニズムを調査する。
論文 参考訳(メタデータ) (2024-10-23T22:46:44Z) - The Shadow of Fraud: The Emerging Danger of AI-powered Social Engineering and its Possible Cure [30.431292911543103]
社会工学(SE)攻撃は個人と組織双方にとって重大な脅威である。
人工知能(AI)の進歩は、よりパーソナライズされ説得力のある攻撃を可能にすることによって、これらの脅威を強化する可能性がある。
本研究は、SE攻撃機構を分類し、その進化を分析し、これらの脅威を測定する方法を探る。
論文 参考訳(メタデータ) (2024-07-22T17:37:31Z) - Threat analysis and adversarial model for Smart Grids [1.7482569079741024]
このスマートパワーグリッドのサイバードメインは、新たな脅威を開拓する。
規制機関、業界、アカデミーを含む様々な利害関係者は、サイバーリスクを緩和し軽減するためのセキュリティメカニズムの提供に取り組んでいる。
近年の研究では、グリッド実践者や学術専門家の間で、学術が提案する脅威の実現可能性と結果に関する合意の欠如が示されている。
これは、攻撃者の完全な能力と目標に基づいて脅威を評価しない、不適切なシミュレーションモデルが原因である。
論文 参考訳(メタデータ) (2024-06-17T16:33:46Z) - GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
我々は,現実の制約に合わせたスマートグリッドの安定性予測システムを対象とした,新たな敵攻撃GAN-GRIDを提案する。
以上の結果から,データやモデル知識を欠いた,安定度モデルのみに武装した敵が,攻撃成功率0.99の安定度でデータを作成できることが判明した。
論文 参考訳(メタデータ) (2024-05-20T14:43:46Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKGはOSCTIの収集と管理のための自動化システムである。
複数のソースから多数のOSCTIレポートを効率的に収集する。
さまざまな脅威エンティティに関する高品質な知識を抽出するために、AIベースの専門技術を使用する。
論文 参考訳(メタデータ) (2022-12-20T16:13:59Z) - Artificial Intelligence-Based Smart Grid Vulnerabilities and Potential
Solutions for Fake-Normal Attacks: A Short Review [0.0]
スマートグリッドシステムは電力業界にとって重要なものだが、その高度なアーキテクチャ設計と運用によって、多くのサイバーセキュリティの脅威にさらされている。
人工知能(AI)ベースの技術は、さまざまなコンピュータ設定でサイバー攻撃を検出することで、ますます人気が高まっている。
現在のAIシステムは、GAN(Generative Adversarial Networks)のような高度な敵系が最近出現したため、公開され、消滅している。
論文 参考訳(メタデータ) (2022-02-14T21:41:36Z) - A Framework for Evaluating the Cybersecurity Risk of Real World, Machine
Learning Production Systems [41.470634460215564]
我々はML生産システムにサイバー攻撃を組み込むMulVAL攻撃グラフ生成および分析フレームワークの拡張を開発する。
提案された拡張を使用することで、セキュリティ実践者はMLコンポーネントを含む環境にアタックグラフ分析手法を適用することができる。
論文 参考訳(メタデータ) (2021-07-05T05:58:11Z) - Internet of Predictable Things (IoPT) Framework to Increase
Cyber-Physical System Resiliency [0.0]
本稿では,予測可能なモノのインターネット(IoPT)の概念を提案する。
高度なデータ分析と機械学習手法を取り入れ、サイバーセキュリティリスクに対するサイバーフィジカルシステムのレジリエンスを高めている。
論文 参考訳(メタデータ) (2021-01-19T19:01:56Z) - Security and Machine Learning in the Real World [33.40597438876848]
私たちは、大規模にデプロイされた機械学習ソフトウェア製品のセキュリティを評価し、システムのセキュリティビューを含む会話を広げるために、私たちの経験に基づいています。
本稿では,機械学習モジュールをデプロイする実践者がシステムを保護するために使用できる,短期的な緩和提案のリストを提案する。
論文 参考訳(メタデータ) (2020-07-13T16:57:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。