論文の概要: ANALYSE -- Learning to Attack Cyber-Physical Energy Systems With
Intelligent Agents
- arxiv url: http://arxiv.org/abs/2305.09476v1
- Date: Fri, 21 Apr 2023 11:36:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-21 11:04:33.326078
- Title: ANALYSE -- Learning to Attack Cyber-Physical Energy Systems With
Intelligent Agents
- Title(参考訳): 分析 - インテリジェントエージェントによるサイバー物理エネルギーシステム攻撃のための学習
- Authors: Thomas Wolgast, Nils Wenninghoff, Stephan Balduin, Eric Veith, Bastian
Fraune, Torben Woltjen, Astrid Nie{\ss}e
- Abstract要約: ANALYSEは、学習エージェントがサイバー物理エネルギーシステムにおける攻撃を自律的に見つけることができる機械学習ベースのソフトウェアスイートである。
未知の攻撃タイプを見つけ、科学文献から多くの既知のサイバー物理エネルギーシステムの攻撃戦略を再現するように設計されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ongoing penetration of energy systems with information and communications
technology (ICT) and the introduction of new markets increase the potential for
malicious or profit-driven attacks that endanger system stability. To ensure
security-of-supply, it is necessary to analyze such attacks and their
underlying vulnerabilities, to develop countermeasures and improve system
design. We propose ANALYSE, a machine-learning-based software suite to let
learning agents autonomously find attacks in cyber-physical energy systems,
consisting of the power system, ICT, and energy markets. ANALYSE is a modular,
configurable, and self-documenting framework designed to find yet unknown
attack types and to reproduce many known attack strategies in cyber-physical
energy systems from the scientific literature.
- Abstract(参考訳): 情報通信技術(ict)によるエネルギーシステムの継続的な普及と新しい市場の導入は、システムの安定性を脅かす悪質または利益主導の攻撃の可能性を高める。
供給のセキュリティを確保するためには、そのような攻撃とその基盤となる脆弱性を分析し、対策を開発し、システム設計を改善する必要がある。
我々は,学習エージェントが電力システム,ICT,エネルギー市場で構成されるサイバー物理エネルギーシステムにおいて,自律的に攻撃を見つけることができる機械学習ベースのソフトウェアスイートANALYSEを提案する。
ANALYSEは、未知の攻撃タイプを見つけ、科学文献からサイバー物理エネルギーシステムにおける既知の攻撃戦略を再現するために設計されたモジュラーで構成可能で自己文書化フレームワークである。
関連論文リスト
- Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
本稿では,VLAに基づくロボットシステムのロバスト性を体系的に評価する。
本研究では,ロボット行動の不安定化に空間的基盤を活用する,標的のない位置認識型攻撃目標を提案する。
また、カメラの視野内に小さなカラフルなパッチを配置し、デジタル環境と物理環境の両方で効果的に攻撃を実行する逆パッチ生成アプローチを設計する。
論文 参考訳(メタデータ) (2024-11-18T01:52:20Z) - Threat analysis and adversarial model for Smart Grids [1.7482569079741024]
このスマートパワーグリッドのサイバードメインは、新たな脅威を開拓する。
規制機関、業界、アカデミーを含む様々な利害関係者は、サイバーリスクを緩和し軽減するためのセキュリティメカニズムの提供に取り組んでいる。
近年の研究では、グリッド実践者や学術専門家の間で、学術が提案する脅威の実現可能性と結果に関する合意の欠如が示されている。
これは、攻撃者の完全な能力と目標に基づいて脅威を評価しない、不適切なシミュレーションモデルが原因である。
論文 参考訳(メタデータ) (2024-06-17T16:33:46Z) - Strategic Deployment of Honeypots in Blockchain-based IoT Systems [1.3654846342364306]
同社は、IoTノード上のスマートコントラクト機能と統合された侵入検知システム(IDS)を活用する、ハニーポットの動的デプロイのためのAI駆動システムモデルを導入した。
このモデルにより、不審な活動に応じて通常のノードをデコイに変換することができ、それによってBIoTネットワークのセキュリティが強化される。
論文 参考訳(メタデータ) (2024-05-21T17:27:00Z) - GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
我々は,現実の制約に合わせたスマートグリッドの安定性予測システムを対象とした,新たな敵攻撃GAN-GRIDを提案する。
以上の結果から,データやモデル知識を欠いた,安定度モデルのみに武装した敵が,攻撃成功率0.99の安定度でデータを作成できることが判明した。
論文 参考訳(メタデータ) (2024-05-20T14:43:46Z) - TMAP: A Threat Modeling and Attack Path Analysis Framework for Industrial IoT Systems (A Case Study of IoM and IoP) [2.9922995594704984]
スマートファクトリにセキュアな産業制御生産システム(ICPS)を配備するには、サイバー脅威とリスクに対処する必要がある。
サイバー物理システム(CPS)における脅威モデリングの現在のアプローチはアドホックで非効率である。
本稿では,予測可能な攻撃ベクトルを同定し,攻撃経路を評価し,各ベクトルの大きさを評価することを目的とした,新しい定量的脅威モデリング手法を提案する。
論文 参考訳(メタデータ) (2023-12-23T18:32:53Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKGはOSCTIの収集と管理のための自動化システムである。
複数のソースから多数のOSCTIレポートを効率的に収集する。
さまざまな脅威エンティティに関する高品質な知識を抽出するために、AIベースの専門技術を使用する。
論文 参考訳(メタデータ) (2022-12-20T16:13:59Z) - Artificial Intelligence-Based Smart Grid Vulnerabilities and Potential
Solutions for Fake-Normal Attacks: A Short Review [0.0]
スマートグリッドシステムは電力業界にとって重要なものだが、その高度なアーキテクチャ設計と運用によって、多くのサイバーセキュリティの脅威にさらされている。
人工知能(AI)ベースの技術は、さまざまなコンピュータ設定でサイバー攻撃を検出することで、ますます人気が高まっている。
現在のAIシステムは、GAN(Generative Adversarial Networks)のような高度な敵系が最近出現したため、公開され、消滅している。
論文 参考訳(メタデータ) (2022-02-14T21:41:36Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
電力系統制御のために提案された最先端のRLエージェントが敵攻撃に対して脆弱であることを示す。
具体的には、敵のマルコフ決定プロセスを用いて攻撃方針を学習し、攻撃の有効性を実証する。
本稿では,RLエージェントの攻撃に対する堅牢性を高め,実行不可能な運用上の決定を回避するために,敵の訓練を利用することを提案する。
論文 参考訳(メタデータ) (2021-10-18T00:50:34Z) - A Framework for Evaluating the Cybersecurity Risk of Real World, Machine
Learning Production Systems [41.470634460215564]
我々はML生産システムにサイバー攻撃を組み込むMulVAL攻撃グラフ生成および分析フレームワークの拡張を開発する。
提案された拡張を使用することで、セキュリティ実践者はMLコンポーネントを含む環境にアタックグラフ分析手法を適用することができる。
論文 参考訳(メタデータ) (2021-07-05T05:58:11Z) - Internet of Predictable Things (IoPT) Framework to Increase
Cyber-Physical System Resiliency [0.0]
本稿では,予測可能なモノのインターネット(IoPT)の概念を提案する。
高度なデータ分析と機械学習手法を取り入れ、サイバーセキュリティリスクに対するサイバーフィジカルシステムのレジリエンスを高めている。
論文 参考訳(メタデータ) (2021-01-19T19:01:56Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。