論文の概要: The Advancement of Personalized Learning Potentially Accelerated by Generative AI
- arxiv url: http://arxiv.org/abs/2412.00691v1
- Date: Sun, 01 Dec 2024 06:01:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:43:12.120739
- Title: The Advancement of Personalized Learning Potentially Accelerated by Generative AI
- Title(参考訳): 生成AIによるパーソナライズドラーニングの進展
- Authors: Yuang Wei, Yuan-Hao Jiang, Jiayi Liu, Changyong Qi, Rui Jia,
- Abstract要約: ジェネレーティブAI(GAI)の急速な発展は、教育の様々な側面に革命的な変化をもたらした。
本研究は, GAIによるパーソナライズされた学習の様々な側面の強化の可能性について, 既存研究の徹底的な分析を通じて検討した。
GAIは、個人の好みやニーズに合わせて適応的な学習体験を提供する際、例外的な能力を示す。
- 参考スコア(独自算出の注目度): 2.13058273176683
- License:
- Abstract: The rapid development of Generative AI (GAI) has sparked revolutionary changes across various aspects of education. Personalized learning, a focal point and challenge in educational research, has also been influenced by the development of GAI. To explore GAI's extensive impact on personalized learning, this study investigates its potential to enhance various facets of personalized learning through a thorough analysis of existing research. The research comprehensively examines GAI's influence on personalized learning by analyzing its application across different methodologies and contexts, including learning strategies, paths, materials, environments, and specific analyses within the teaching and learning processes. Through this in-depth investigation, we find that GAI demonstrates exceptional capabilities in providing adaptive learning experiences tailored to individual preferences and needs. Utilizing different forms of GAI across various subjects yields superior learning outcomes. The article concludes by summarizing scenarios where GAI is applicable in educational processes and discussing strategies for leveraging GAI to enhance personalized learning, aiming to guide educators and learners in effectively utilizing GAI to achieve superior learning objectives.
- Abstract(参考訳): ジェネレーティブAI(GAI)の急速な発展は、教育の様々な側面に革命的な変化をもたらした。
教育研究の焦点と課題であるパーソナライズドラーニングも、GAIの発展の影響を受けている。
GAIのパーソナライズドラーニングに対する広範な影響を探るため,既存の研究の徹底的な分析を通じて,パーソナライズドラーニングのさまざまな側面を強化する可能性について検討した。
この研究は、学習戦略、経路、材料、環境、および教育・学習過程における特定の分析を含む、異なる方法論や文脈で応用を分析することで、GAIがパーソナライズされた学習に与える影響を包括的に調査する。
この詳細な調査を通じて、GAIは個人の好みやニーズに合わせて適応的な学習体験を提供する際、例外的な能力を示した。
GAIの様々な形態を利用すると、優れた学習結果が得られる。
本稿では, GAIが教育プロセスに適用可能なシナリオを要約し, GAIを活用してパーソナライズされた学習を促進するための戦略について議論し, GAIを効果的に活用し,優れた学習目標を達成するための教育者や学習者を指導することを目的とする。
関連論文リスト
- Educational Personalized Learning Path Planning with Large Language Models [0.0]
本稿では,これらの課題に対処するために,大規模言語モデル(LLM)と迅速なエンジニアリングを統合する新しいアプローチを提案する。
学習者固有の情報を組み込んだプロンプトを設計することにより,LLama-2-70B や GPT-4 などの LLM をガイドし,パーソナライズ,一貫性,教育的な学習経路を生成する。
論文 参考訳(メタデータ) (2024-07-16T14:32:56Z) - Revolutionising Role-Playing Games with ChatGPT [0.0]
本研究の目的は,AIによるシミュレーションが学生の学習経験に与える影響を分析することである。
ヴィゴツキーの社会文化的理論に基づいて、ChatGPTは学生に戦略的意思決定プロセスのより深い理解を与えるために用いられた。
論文 参考訳(メタデータ) (2024-07-02T08:21:40Z) - Large Language Models for Education: A Survey and Outlook [69.02214694865229]
各視点の技術的進歩を体系的にレビューし、関連するデータセットとベンチマークを整理し、教育におけるLSMの展開に伴うリスクと課題を特定する。
本調査は、LLMの力を利用して教育実践を変革し、より効果的なパーソナライズされた学習環境を育むための、教育者、研究者、政策立案者のための総合的な技術図を提供することを目的とする。
論文 参考訳(メタデータ) (2024-03-26T21:04:29Z) - Tailoring Education with GenAI: A New Horizon in Lesson Planning [0.21427777919040414]
本研究では、教育者のためのデジタルアシスタントとして設計されたGenAIツールを導入し、カスタマイズされた授業プランの作成を可能にする。
このツールは'interactive mega-prompt'と呼ばれる革新的な機能を利用している。
ツールの有効性を評価するため,定量的(時間節約率の%)と質的(ユーザ満足度)の両方を取り入れた総合的な方法論を実装した。
論文 参考訳(メタデータ) (2024-02-12T17:30:05Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
我々は、生成AIと適応学習の交差研究に光を当てた。
我々は、この連合が教育における次の段階の学習形式の発展に大きく貢献するだろうと論じている。
論文 参考訳(メタデータ) (2024-02-02T23:54:51Z) - Integrating AI and Learning Analytics for Data-Driven Pedagogical Decisions and Personalized Interventions in Education [0.2812395851874055]
本研究では,革新的な学習分析ツールの概念化,開発,展開について検討する。
学生のストレスレベル、好奇心、混乱、扇動、トピックの嗜好、学習方法などの重要なデータポイントを分析し、学習環境の総合的なビューを提供する。
この研究は、パーソナライズされたデータ駆動型教育を形成する上で、AIが果たす役割を浮き彫りにする。
論文 参考訳(メタデータ) (2023-12-15T06:00:26Z) - Multimodality of AI for Education: Towards Artificial General
Intelligence [14.121655991753483]
マルチモーダル人工知能(AI)アプローチは、教育的文脈における人工知能(AGI)の実現に向けた道を歩んでいる。
この研究は、認知フレームワーク、高度な知識表現、適応学習機構、多様なマルチモーダルデータソースの統合など、AGIの重要な側面を深く掘り下げている。
本稿は、AGI開発における今後の方向性と課題に関する洞察を提供する、教育におけるマルチモーダルAIの役割の意味についても論じる。
論文 参考訳(メタデータ) (2023-12-10T23:32:55Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
目標指向知能チューニングシステム(GITS)という新しいタスクを提案する。
GITSは,演習や評価のカスタマイズを戦略的に計画することで,学生の指定概念の習得を可能にすることを目的としている。
PAI(Planning-Assessment-Interaction)と呼ばれるグラフに基づく新しい強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-03T12:37:16Z) - Exploring the Cognitive Knowledge Structure of Large Language Models: An
Educational Diagnostic Assessment Approach [50.125704610228254]
大規模言語モデル(LLM)は、様々なタスクにまたがる例外的なパフォーマンスを示すだけでなく、知性の火花も示している。
近年の研究では、人間の試験における能力の評価に焦点が当てられ、異なる領域における彼らの印象的な能力を明らかにしている。
ブルーム分類に基づく人体検査データセットであるMoocRadarを用いて評価を行った。
論文 参考訳(メタデータ) (2023-10-12T09:55:45Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z) - Transfer Learning in Deep Reinforcement Learning: A Survey [64.36174156782333]
強化学習は、シーケンシャルな意思決定問題を解決するための学習パラダイムである。
近年、ディープニューラルネットワークの急速な発展により、強化学習の顕著な進歩が見られた。
転校学習は 強化学習が直面する様々な課題に 対処するために生まれました
論文 参考訳(メタデータ) (2020-09-16T18:38:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。