論文の概要: Symbolic Quantitative Information Flow for Probabilistic Programs
- arxiv url: http://arxiv.org/abs/2412.00907v2
- Date: Tue, 03 Dec 2024 08:27:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:40:26.432017
- Title: Symbolic Quantitative Information Flow for Probabilistic Programs
- Title(参考訳): 確率的プログラムのための記号的定量的情報フロー
- Authors: Philipp Schröer, Francesca Randone, Raúl Pardo, Andrzej Wąsowski,
- Abstract要約: 最新のデータ集約システムが機密情報を漏らさないよう、最重要事項である。
本稿では,Joost-Pieter Katoenの協力を得て,情報理論による情報漏洩の計算方法について議論する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: It is of utmost importance to ensure that modern data intensive systems do not leak sensitive information. In this paper, the authors, who met thanks to Joost-Pieter Katoen, discuss symbolic methods to compute information-theoretic measures of leakage: entropy, conditional entropy, Kullback-Leibler divergence, and mutual information. We build on two semantic frameworks for symbolic execution of probabilistic programs. For discrete programs, we use weakest pre-expectation calculus to compute exact symbolic expressions for the leakage measures. Using Second Order Gaussian Approximation (SOGA), we handle programs that combine discrete and continuous distributions. However, in the SOGA setting, we approximate the exact semantics using Gaussian mixtures and compute bounds for the measures. We demonstrate the use of our methods in two widely used mechanisms to ensure differential privacy: randomized response and the Gaussian mechanism.
- Abstract(参考訳): 最新のデータ集約システムが機密情報を漏らさないよう、最重要事項である。
本稿では,Joost-Pieter Katoenの協力を得て,エントロピー,条件エントロピー,Kulback-Leiblerの発散,相互情報といった情報理論的リーク対策を計算するための記号的手法について論じる。
確率的プログラムの実行を象徴する2つのセマンティック・フレームワークを構築した。
離散プログラムでは、最も弱い事前探索計算を用いて、リーク対策の正確な記号表現を計算する。
第二次ガウス近似(SOGA)を用いて、離散分布と連続分布を組み合わせたプログラムを扱う。
しかし、SOGA設定では、ガウス混合と測度に対する計算境界を用いた正確な意味論を近似する。
本稿では, ランダム化応答とガウス機構という2つの手法を用いて, 差分プライバシーを確保する手法を実証する。
関連論文リスト
- Synthesizing Tight Privacy and Accuracy Bounds via Weighted Model Counting [5.552645730505715]
2つの中核的な課題は、DPアルゴリズムの分布の表現的でコンパクトで効率的な符号化を見つけることである。
プライバシーと正確性に縛られた合成法を開発することで、最初の課題に対処する。
DPアルゴリズムに固有の対称性を活用するためのフレームワークを開発する。
論文 参考訳(メタデータ) (2024-02-26T19:29:46Z) - On diffusion-based generative models and their error bounds: The log-concave case with full convergence estimates [5.13323375365494]
我々は,強い対数対数データの下での拡散に基づく生成モデルの収束挙動を理論的に保証する。
スコア推定に使用される関数のクラスは、スコア関数上のリプシッツネスの仮定を避けるために、リプシッツ連続関数からなる。
この手法はサンプリングアルゴリズムにおいて最もよく知られた収束率をもたらす。
論文 参考訳(メタデータ) (2023-11-22T18:40:45Z) - PDE-constrained Gaussian process surrogate modeling with uncertain data locations [1.943678022072958]
本稿では,入力データの可変性を関数と偏微分方程式近似のガウス過程回帰に組み込むベイズ的手法を提案する。
一般化の連続的な良好な性能が観察され、予測の不確実性の実質的な低減が達成される。
論文 参考訳(メタデータ) (2023-05-19T10:53:08Z) - Distributional Gaussian Processes Layers for Out-of-Distribution
Detection [18.05109901753853]
ディープニューラルネットワークに依存する分布外検出モデルが、医用画像の領域シフトを検出するのに適しているかどうかは不明だ。
本稿では,ワッサーシュタイン2空間で動作するガウス過程を組み込んだ階層的畳み込みガウス過程に対するパラメータ効率のよいベイズ層を提案する。
我々の不確実性推定は、以前のベイズネットワークの能力を上回る分布外検出をもたらす。
論文 参考訳(メタデータ) (2022-06-27T14:49:48Z) - Learning Summary Statistics for Bayesian Inference with Autoencoders [58.720142291102135]
我々は,ディープニューラルネットワークに基づくオートエンコーダの内部次元を要約統計として利用する。
パラメータ関連情報を全て符号化するエンコーダのインセンティブを作成するため,トレーニングデータの生成に使用した暗黙的情報にデコーダがアクセスできるようにする。
論文 参考訳(メタデータ) (2022-01-28T12:00:31Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
本稿では脳波の分類に欠落したデータを扱うための2つの方法を提案する。
第1のアプローチでは、インプットされたデータと$k$-nearestの隣人アルゴリズムとの共分散を推定し、第2のアプローチでは、期待最大化アルゴリズム内で観測データの可能性を活用することにより、観測データに依存する。
その結果, 提案手法は観測データに基づく分類よりも優れており, 欠落したデータ比が増大しても高い精度を維持することができることがわかった。
論文 参考訳(メタデータ) (2021-10-19T14:24:50Z) - A Note on Optimizing Distributions using Kernel Mean Embeddings [94.96262888797257]
カーネル平均埋め込みは、その無限次元平均埋め込みによる確率測度を表す。
カーネルが特徴的である場合、カーネルの総和密度を持つ分布は密度が高いことを示す。
有限サンプル設定でそのような分布を最適化するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2021-06-18T08:33:45Z) - Sparse Algorithms for Markovian Gaussian Processes [18.999495374836584]
スパースマルコフ過程は、誘導変数の使用と効率的なカルマンフィルタライク再帰を結合する。
我々は,局所ガウス項を用いて非ガウス的確率を近似する一般的なサイトベースアプローチであるsitesを導出する。
提案手法は,変動推論,期待伝播,古典非線形カルマンスムーサなど,機械学習と信号処理の両方から得られるアルゴリズムの新たなスパース拡張の一群を導出する。
派生した方法は、モデルが時間と空間の両方で別々の誘導点を持つ文学時間データに適しています。
論文 参考訳(メタデータ) (2021-03-19T09:50:53Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
分割関数やMAP推定をペアワイズMRFで効率的に計算する手法を提案する。
一般のバイナリMRFから完全多クラス設定への半定緩和を拡張し、解法を用いて再び効率的に解けるようなコンパクトな半定緩和を開発する。
論文 参考訳(メタデータ) (2020-12-04T15:36:29Z) - Information Theoretic Meta Learning with Gaussian Processes [74.54485310507336]
情報理論の概念,すなわち相互情報と情報のボトルネックを用いてメタ学習を定式化する。
相互情報に対する変分近似を用いることで、メタ学習のための汎用的かつトラクタブルな枠組みを導出する。
論文 参考訳(メタデータ) (2020-09-07T16:47:30Z) - Distributed Sketching Methods for Privacy Preserving Regression [54.51566432934556]
ランダム化されたスケッチを利用して、問題の次元を減らし、プライバシを保ち、非同期分散システムにおけるストラグラーレジリエンスを改善します。
従来のスケッチ手法に対する新しい近似保証を導出し、分散スケッチにおけるパラメータ平均化の精度を解析する。
大規模実験によるサーバレスコンピューティングプラットフォームにおける分散スケッチのパフォーマンスについて説明する。
論文 参考訳(メタデータ) (2020-02-16T08:35:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。