Adaptive Rank, Reduced Forgetting: Knowledge Retention in Continual Learning Vision-Language Models with Dynamic Rank-Selective LoRA
- URL: http://arxiv.org/abs/2412.01004v3
- Date: Mon, 09 Dec 2024 09:25:36 GMT
- Title: Adaptive Rank, Reduced Forgetting: Knowledge Retention in Continual Learning Vision-Language Models with Dynamic Rank-Selective LoRA
- Authors: Haodong Lu, Chongyang Zhao, Jason Xue, Lina Yao, Kristen Moore, Dong Gong,
- Abstract summary: Existing methods often rely on additional reference data, isolated components for distribution or domain predictions.
We propose Dynamic Rank-Selective Low Rank Adaptation (LoRA), a universal and efficient continual learning approach.
Our approach continually enhances the pre-trained VLM by retaining both the pre-trained knowledge and the knowledge acquired during CL.
- Score: 19.982853959240497
- License:
- Abstract: We investigate whether the pre-trained knowledge of vision-language models (VLMs), such as CLIP, can be retained or even enhanced during continual learning (CL) while absorbing knowledge from a data stream. Existing methods often rely on additional reference data, isolated components for distribution or domain predictions, leading to high training costs, increased inference complexity, and limited improvement potential for pre-trained models. To address these challenges, we first comprehensively analyze the effects of parameter update locations and ranks on downstream adaptation and knowledge retention. Based on these insights, we propose Dynamic Rank-Selective Low Rank Adaptation (LoRA), a universal and efficient CL approach that adaptively assigns ranks to LoRA modules based on their relevance to the current data. Unlike prior methods, our approach continually enhances the pre-trained VLM by retaining both the pre-trained knowledge and the knowledge acquired during CL. Our approach eliminates the need for explicit domain or distribution prediction and additional reference data, enabling seamless integration of new tasks while preserving pre-trained capabilities. It also maintains the original architecture and deployment pipeline of the pre-trained model without incurring any additional inference overhead. Extensive experiments and analyses demonstrate that our method outperforms state-of-the-art approaches in continually absorbing knowledge of downstream tasks while retaining pre-trained knowledge.
Related papers
- SPARC: Subspace-Aware Prompt Adaptation for Robust Continual Learning in LLMs [4.194295877935867]
We propose a lightweight continual learning framework for large language models (LLMs)
Our method achieves high knowledge retention in both task-incremental and domain-incremental continual learning setups.
Experiments on the SuperGLUE benchmark demonstrate that our PCA-based prompt tuning combined with LoRA maintains full knowledge retention while improving accuracy, utilizing only 1% of the model's parameters.
arXiv Detail & Related papers (2025-02-05T06:11:55Z) - Aligning Instruction Tuning with Pre-training [81.4748965653345]
We propose Aligning Instruction Tuning with Pre-training (AITP) to align instruction tuning with pre-training distributions.
We show consistent performance improvements with AITP on three fully open large language models (LLMs) across eight benchmarks.
arXiv Detail & Related papers (2025-01-16T08:27:40Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - Beyond Prompt Learning: Continual Adapter for Efficient Rehearsal-Free Continual Learning [22.13331870720021]
We propose a beyond prompt learning approach to the RFCL task, called Continual Adapter (C-ADA)
C-ADA flexibly extends specific weights in CAL to learn new knowledge for each task and freezes old weights to preserve prior knowledge.
Our approach achieves significantly improved performance and training speed, outperforming the current state-of-the-art (SOTA) method.
arXiv Detail & Related papers (2024-07-14T17:40:40Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
Domain-Class Incremental Learning is a realistic but challenging continual learning scenario.
To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability.
This incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability.
Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy overhead.
We propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of
arXiv Detail & Related papers (2024-07-07T12:19:37Z) - Investigating Continual Pretraining in Large Language Models: Insights and Implications [9.660013084324817]
Continual learning in large language models (LLMs) is an evolving domain that focuses on developing efficient and sustainable training strategies.
We introduce a new benchmark designed to measure the adaptability of LLMs to changing pretraining data landscapes.
Our findings uncover several key insights: (i) continual pretraining consistently improves 1.5B models studied in this work and is also superior to domain adaptation, (ii) larger models always achieve better perplexity than smaller ones when continually pretrained on the same corpus, (iii) smaller models are particularly sensitive to continual pretraining, showing the most significant rates of both learning and
arXiv Detail & Related papers (2024-02-27T10:47:24Z) - Continual Learners are Incremental Model Generalizers [70.34479702177988]
This paper extensively studies the impact of Continual Learning (CL) models as pre-trainers.
We find that the transfer quality of the representation often increases gradually without noticeable degradation in fine-tuning performance.
We propose a new fine-tuning scheme, GLobal Attention Discretization (GLAD), that preserves rich task-generic representation during solving downstream tasks.
arXiv Detail & Related papers (2023-06-21T05:26:28Z) - Unified Instance and Knowledge Alignment Pretraining for Aspect-based
Sentiment Analysis [96.53859361560505]
Aspect-based Sentiment Analysis (ABSA) aims to determine the sentiment polarity towards an aspect.
There always exists severe domain shift between the pretraining and downstream ABSA datasets.
We introduce a unified alignment pretraining framework into the vanilla pretrain-finetune pipeline.
arXiv Detail & Related papers (2021-10-26T04:03:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.