論文の概要: Embedded Machine Learning for Solar PV Power Regulation in a Remote Microgrid
- arxiv url: http://arxiv.org/abs/2412.01054v1
- Date: Mon, 02 Dec 2024 02:29:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:40:55.691842
- Title: Embedded Machine Learning for Solar PV Power Regulation in a Remote Microgrid
- Title(参考訳): 遠隔マイクログリッドにおける太陽光発電電力規制のための組込み機械学習
- Authors: Yongli Zhu, Linna Xu, Jian Huang,
- Abstract要約: 本稿では,遠隔地マイクログリッドにおける太陽インバータ電力制御の機械学習による研究について述べる。
アクティブおよびリアクティブな電力制御のための機械学習モデルは、それぞれアンサンブル学習法を用いて訓練される。
遠端制御センターの中央サーバで推論を行う従来の方式とは異なり、提案方式では、トレーニングされたモデルをインバータ近傍の組込みエッジ計算装置に展開し、通信遅延を低減する。
- 参考スコア(独自算出の注目度): 2.308168896770315
- License:
- Abstract: This paper presents a machine-learning study for solar inverter power regulation in a remote microgrid. Machine learning models for active and reactive power control are respectively trained using an ensemble learning method. Then, unlike conventional schemes that make inferences on a central server in the far-end control center, the proposed scheme deploys the trained models on an embedded edge-computing device near the inverter to reduce the communication delay. Experiments on a real embedded device achieve matched results as on the desktop PC, with about 0.1ms time cost for each inference input.
- Abstract(参考訳): 本稿では,遠隔地マイクログリッドにおける太陽インバータ電力制御の機械学習による研究について述べる。
アクティブおよびリアクティブな電力制御のための機械学習モデルは、それぞれアンサンブル学習法を用いて訓練される。
そして、遠端制御センターの中央サーバで推論を行う従来の方式とは異なり、提案方式では、トレーニングされたモデルをインバータ近傍の組込みエッジ計算装置に展開し、通信遅延を低減する。
実組込みデバイスにおける実験は、デスクトップPCのように、各推論入力の約0.1mの時間コストで一致した結果を達成する。
関連論文リスト
- Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
この研究は、大規模なデータセットを再計算し、再トレーニングすることなくオンラインチューニングが可能な、新しいパラメータ適応型AMPCアーキテクチャを導入している。
資源制約の厳しいマイクロコントローラ(MCU)を用いた2種類の実カートポールシステムの揺らぎを制御し,パラメータ適応型AMPCの有効性を示す。
これらの貢献は、現実世界のシステムにおけるAMPCの実践的応用に向けた重要な一歩である。
論文 参考訳(メタデータ) (2024-04-08T20:02:19Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
本研究は,遠隔・無線接続型NPUからなる分割計算機システムに,覚醒無線機構を組み込んだ新しいアーキテクチャを提案する。
覚醒無線に基づくニューロモルフィックスプリットコンピューティングシステムの設計における重要な課題は、検知、覚醒信号検出、意思決定のためのしきい値の選択である。
論文 参考訳(メタデータ) (2024-04-02T10:19:04Z) - Resilient Control of Networked Microgrids using Vertical Federated
Reinforcement Learning: Designs and Real-Time Test-Bed Validations [5.394255369988441]
本稿では、(a)モデル複雑度、(b)ISRデバイスの未知の動的挙動、(b)マルチパーティ所有のネットワークグリッドにおけるデータ共有に関するプライバシー問題、(2)シミュレーションからハードウェア・イン・ザ・ループテストベッドへの学習制御の移行について、新しいフェデレーション強化学習(Fed-RL)アプローチを提案する。
実験により,シミュレータ学習したRLコントローラは実時間テストベッドのセットアップによる説得力のある結果が得られ,sim-to-realギャップの最小化が検証された。
論文 参考訳(メタデータ) (2023-11-21T00:59:27Z) - Decentralized federated learning methods for reducing communication cost
and energy consumption in UAV networks [8.21384946488751]
無人航空機(UAV)は、商品の配送、リアルタイム道路交通のマッピング、汚染の監視など、現代のスマートシティにおいて多くの役割を担っている。
従来のドローンの機械学習モデルは、データのプライバシー問題、通信コスト、エネルギー制限に遭遇する。
本稿では,UAVネットワークのための分散学習(DFL-UN)の既存アーキテクチャをベースとした,通信FLと代替FLの2つのアグリゲーション手法を提案する。
論文 参考訳(メタデータ) (2023-04-13T14:00:34Z) - Skip Training for Multi-Agent Reinforcement Learning Controller for
Industrial Wave Energy Converters [94.84709449845352]
近年のウェーブ・エナジー・コンバータ(WEC)は、発電を最大化するために複数の脚と発電機を備えている。
従来のコントローラは複雑な波のパターンを捕捉する制限を示しており、コントローラはエネルギー捕獲を効率的に最大化する必要がある。
本稿では,従来のスプリングダンパよりも優れたマルチエージェント強化学習コントローラ(MARL)を提案する。
論文 参考訳(メタデータ) (2022-09-13T00:20:31Z) - Automating In-Network Machine Learning [2.857025628729502]
Planterは、トレーニングされた機械学習モデルをプログラム可能なデバイスにマッピングするためのオープンソースのフレームワークである。
ネットワーク内機械学習アルゴリズムは,回線レートで動作し,レイテンシへの影響を無視し,標準スイッチング機能と共存し,精度のトレードオフがないことを示す。
論文 参考訳(メタデータ) (2022-05-18T09:42:22Z) - Unit-Modulus Wireless Federated Learning Via Penalty Alternating
Minimization [64.76619508293966]
Wireless Federated Learning(FL)は、分散データセットから無線通信を介してグローバルパラメトリックモデルをトレーニングする、新興機械学習パラダイムである。
本稿では、ローカルモデルパラメータをアップロードし、無線通信を介してグローバルモデルパラメータを算出する無線FLフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-31T08:19:54Z) - Predicting Power Electronics Device Reliability under Extreme Conditions
with Machine Learning Algorithms [0.0]
我々は、デバイス信頼性を予測するために機械学習アルゴリズムを利用した。
モデルをトレーニングするために、私たちは10の異なるメーカーから224個の電源デバイスをテストしました。
我々は、グラディエント・ブースティングやLSTMエンコーダ・デコーダ・ネットワークなどの計算モデルにより、高精度で電源装置故障を予測できることを示した。
論文 参考訳(メタデータ) (2021-07-21T18:17:32Z) - Low-Latency Asynchronous Logic Design for Inference at the Edge [0.9831489366502301]
本稿では,自己時間型早期伝播型非同期推論回路の面積と電力オーバーヘッドの低減手法を提案する。
タイミングに対する自然なレジリエンスと論理的な基盤のため、回路は環境や供給電圧の変動に耐性がある。
提案回路の平均レイテンシは同期実装と比較して10倍低減される。
論文 参考訳(メタデータ) (2020-12-07T00:40:52Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
IoT(Internet of Things)デバイスは、収集したデータを中央のコントローラに送信することができず、機械学習モデルをトレーニングすることができる。
GoogleのセミナルFLアルゴリズムでは、すべてのデバイスを中央コントローラに直接接続する必要がある。
本稿では,コラボレーティブFL(CFL)と呼ばれる新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-03T20:00:02Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
フェデレートラーニング(Federated Learning)は、無線デバイスとのコラボレーションによって、中央サーバでグローバルモデルをトレーニングするための、プライバシ保護のアプローチである。
本稿では,大規模マルチインプット多出力通信システム上でのフェデレーション学習のための圧縮センシング手法を提案する。
論文 参考訳(メタデータ) (2020-03-18T05:56:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。