Object Tracking in a $360^o$ View: A Novel Perspective on Bridging the Gap to Biomedical Advancements
- URL: http://arxiv.org/abs/2412.01119v1
- Date: Mon, 02 Dec 2024 04:43:50 GMT
- Title: Object Tracking in a $360^o$ View: A Novel Perspective on Bridging the Gap to Biomedical Advancements
- Authors: Mojtaba S. Fazli, Shannon Quinn,
- Abstract summary: This review categorizes object tracking techniques into traditional, statistical, feature-based, and machine learning paradigms.
The paper explores limitations of current methods and highlights emerging trends to guide the development of next-generation tracking systems.
- Score: 0.1933681537640272
- License:
- Abstract: Object tracking is a fundamental tool in modern innovation, with applications in defense systems, autonomous vehicles, and biomedical research. It enables precise identification, monitoring, and spatiotemporal analysis of objects across sequential frames, providing insights into dynamic behaviors. In cell biology, object tracking is vital for uncovering cellular mechanisms, such as migration, interactions, and responses to drugs or pathogens. These insights drive breakthroughs in understanding disease progression and therapeutic interventions. Over time, object tracking methods have evolved from traditional feature-based approaches to advanced machine learning and deep learning frameworks. While classical methods are reliable in controlled settings, they struggle in complex environments with occlusions, variable lighting, and high object density. Deep learning models address these challenges by delivering greater accuracy, adaptability, and robustness. This review categorizes object tracking techniques into traditional, statistical, feature-based, and machine learning paradigms, with a focus on biomedical applications. These methods are essential for tracking cells and subcellular structures, advancing our understanding of health and disease. Key performance metrics, including accuracy, efficiency, and adaptability, are discussed. The paper explores limitations of current methods and highlights emerging trends to guide the development of next-generation tracking systems for biomedical research and broader scientific domains.
Related papers
- Circuit design in biology and machine learning. II. Anomaly detection [0.0]
Anomaly detection could enhance our understanding of how biological systems recognize and respond to atypical environmental inputs.
This study builds on machine learning techniques to develop a conceptual framework for biological circuits.
I focus on minimal circuits inspired by machine learning concepts, reduced to cellular scale.
arXiv Detail & Related papers (2024-11-23T20:36:57Z) - Enhancing Generative Class Incremental Learning Performance with Model Forgetting Approach [50.36650300087987]
This study presents a novel approach to Generative Class Incremental Learning (GCIL) by introducing the forgetting mechanism.
We have found that integrating the forgetting mechanisms significantly enhances the models' performance in acquiring new knowledge.
arXiv Detail & Related papers (2024-03-27T05:10:38Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
Bio-plausible credit assignment is compatible with practically any learning condition and is energy-efficient.
In this paper, we survey several vital algorithms that model bio-plausible rules of credit assignment in artificial neural networks.
We conclude by discussing the future challenges that will need to be addressed in order to make such algorithms more useful in practical applications.
arXiv Detail & Related papers (2024-02-16T18:05:09Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
The challenge of replicating research results has posed a significant impediment to the field of molecular biology.
We first curate a comprehensive multimodal dataset, named ProBio, as an initial step towards this objective.
Next, we devise two challenging benchmarks, transparent solution tracking and multimodal action recognition, to emphasize the unique characteristics and difficulties associated with activity understanding in BioLab settings.
arXiv Detail & Related papers (2023-11-01T14:44:01Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past,
Present and Future [36.58189530598098]
It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data.
A major limitation of existing methods has been the focus on grid-like data.
graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system.
arXiv Detail & Related papers (2021-05-27T13:32:45Z) - Representation Learning for Networks in Biology and Medicine:
Advancements, Challenges, and Opportunities [18.434430658837258]
We have witnessed a rapid expansion of representation learning techniques into modeling, analysis, and learning with networks.
In this review, we put forward an observation that long-standing principles of network biology and medicine can provide the conceptual grounding for representation learning.
We synthesize a spectrum of algorithmic approaches that leverage topological features to embed networks into compact vector spaces.
arXiv Detail & Related papers (2021-04-11T00:20:00Z) - Biosensors and Machine Learning for Enhanced Detection, Stratification,
and Classification of Cells: A Review [0.927465654262466]
We provide an account of how Machine Learning has been applied explicitly to sensors that detect and classify cells.
We also provide a comparison of how different sensing modalities and algorithms affect the accuracy and the dataset size required.
arXiv Detail & Related papers (2021-01-06T04:32:30Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.