Neural Network-Based Frequency Optimization for Superconducting Quantum Chips
- URL: http://arxiv.org/abs/2412.01183v4
- Date: Fri, 20 Dec 2024 05:29:43 GMT
- Title: Neural Network-Based Frequency Optimization for Superconducting Quantum Chips
- Authors: Bin-Han Lu, Peng Wang, Qing-Song Li, Yu-Chun Wu, Zhao-Yun Chen, Guo-Ping Guo,
- Abstract summary: We propose a neural network-based frequency configuration approach for superconducting quantum chips.
A trained neural network model estimates frequency configuration errors, and an intermediate optimization strategy identifies optimal configurations within localized regions of the chip.
We also design a crosstalk-aware hardware-efficient ansatz for variational quantum eigensolvers, achieving improved energy computations.
- Score: 3.4802501242383146
- License:
- Abstract: Optimizing the frequency configuration of qubits and quantum gates in superconducting quantum chips presents a complex NP-complete optimization challenge. This process is critical for enabling practical control while minimizing decoherence and suppressing significant crosstalk. In this paper, we propose a neural network-based frequency configuration approach. A trained neural network model estimates frequency configuration errors, and an intermediate optimization strategy identifies optimal configurations within localized regions of the chip. The effectiveness of our method is validated through randomized benchmarking and cross-entropy benchmarking. Furthermore, we design a crosstalk-aware hardware-efficient ansatz for variational quantum eigensolvers, achieving improved energy computations.
Related papers
- Resource-Efficient Compilation of Distributed Quantum Circuits for Solving Large-Scale Wireless Communication Network Problems [10.434368470402935]
optimizing routing in Wireless Sensor Networks (WSNs) is pivotal for minimizing energy consumption and extending network lifetime.
This paper introduces a resourceefficient compilation method for distributed quantum circuits tailored to address large-scale WSN routing problems.
arXiv Detail & Related papers (2025-01-17T15:10:22Z) - Surrogate-guided optimization in quantum networks [0.9148747049384086]
We propose an optimization algorithm to improve the design and performance of quantum communication networks.
Our framework allows for more comprehensive quantum network studies, integrating surrogate-assisted optimization with existing quantum network simulators.
arXiv Detail & Related papers (2024-07-24T11:55:18Z) - Pulse-based variational quantum optimization and metalearning in superconducting circuits [3.770494165043573]
We introduce pulse-based variational quantum optimization (PBVQO) as a hardware-level framework.
We illustrate the framework by optimizing external superconducting on quantum interference devices.
The synergy between PBVQO and meta-learning provides an advantage over conventional gate-based variational algorithms.
arXiv Detail & Related papers (2024-07-17T15:05:36Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Reinforcement learning pulses for transmon qubit entangling gates [0.0]
We utilize a continuous-control reinforcement learning algorithm to design entangling two-qubit gates for superconducting qubits.
We demonstrate the capability to generate novel pulse sequences that outperform the standard cross-resonance gates.
arXiv Detail & Related papers (2023-11-07T03:19:19Z) - Faster variational quantum algorithms with quantum kernel-based
surrogate models [0.0]
We present a new method for small-to-intermediate scale variational algorithms on noisy quantum processors.
Our scheme shifts the computational burden onto the classical component of these hybrid algorithms, greatly reducing the number of queries to the quantum processor.
arXiv Detail & Related papers (2022-11-02T14:11:25Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
We study the interplay between pruning and quantization during the training of neural networks for ultra low latency applications.
We find that quantization-aware pruning yields more computationally efficient models than either pruning or quantization alone for our task.
arXiv Detail & Related papers (2021-02-22T19:00:05Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.