論文の概要: Morphological-Symmetry-Equivariant Heterogeneous Graph Neural Network for Robotic Dynamics Learning
- arxiv url: http://arxiv.org/abs/2412.01297v1
- Date: Mon, 02 Dec 2024 09:10:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:41:33.879570
- Title: Morphological-Symmetry-Equivariant Heterogeneous Graph Neural Network for Robotic Dynamics Learning
- Title(参考訳): ロボットダイナミクス学習のためのモルフォロジー・シメトリ-同変不均質グラフニューラルネットワーク
- Authors: Fengze Xie, Sizhe Wei, Yue Song, Yisong Yue, Lu Gan,
- Abstract要約: ロボット力学学習のための形態的対称性等価な異種グラフニューラルネットワークMS-HGNNを提案する。
MS-HGNNは、ロボットキネマティック構造と形態的対称性を単一のグラフネットワークに統合する。
- 参考スコア(独自算出の注目度): 31.728300637833748
- License:
- Abstract: We present a morphological-symmetry-equivariant heterogeneous graph neural network, namely MS-HGNN, for robotic dynamics learning, that integrates robotic kinematic structures and morphological symmetries into a single graph network. These structural priors are embedded into the learning architecture as constraints, ensuring high generalizability, sample and model efficiency. The proposed MS-HGNN is a versatile and general architecture that is applicable to various multi-body dynamic systems and a wide range of dynamics learning problems. We formally prove the morphological-symmetry-equivariant property of our MS-HGNN and validate its effectiveness across multiple quadruped robot learning problems using both real-world and simulated data. Our code is made publicly available at https://github.com/lunarlab-gatech/MorphSym-HGNN/.
- Abstract(参考訳): 本稿では,ロボット動力学的構造と形態的対称性を1つのグラフネットワークに統合した,形態的対称性に等価な異種グラフニューラルネットワークMS-HGNNを提案する。
これらの構造的前提は、学習アーキテクチャに制約として組み込まれ、高い一般化可能性、サンプルおよびモデルの効率が保証される。
提案したMS-HGNNは多体動的システムや幅広い動的学習問題に適用可能な汎用的で汎用的なアーキテクチャである。
我々は,MS-HGNNの形態-対称性-等式特性を正式に証明し,実世界とシミュレーションデータの両方を用いて,複数の四足歩行ロボット学習問題に対して有効性を検証する。
私たちのコードはhttps://github.com/lunarlab-gatech/MorphSym-HGNN/で公開されています。
関連論文リスト
- Discovering Governing equations from Graph-Structured Data by Sparse Identification of Nonlinear Dynamical Systems [0.27624021966289597]
グラフ構造化データ(SINDyG)から動的システムのスパース同定法を開発した。
SINDyGは、ネットワーク構造をスパースレグレッションに組み込んで、基礎となるネットワーク力学を説明するモデルパラメータを識別する。
論文 参考訳(メタデータ) (2024-09-02T17:51:37Z) - SympGNNs: Symplectic Graph Neural Networks for identifiying high-dimensional Hamiltonian systems and node classification [4.275204859038151]
シンプレクティックグラフニューラルネットワーク(SympGNN)は、高次元ハミルトニアンのシステム同定を効果的に処理できる。
我々はSympGNNがグラフニューラルネットワークの分野における2つの重要な課題である、過度にスムースでヘテロフィな問題を克服できることを示した。
論文 参考訳(メタデータ) (2024-08-29T16:47:58Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Bond Graphs for multi-physics informed Neural Networks for multi-variate time series [6.775534755081169]
既存の手法は複雑な多分野・多領域現象のタスクには適用されない。
タスク固有モデルに入力可能な多物理インフォームド表現を生成するニューラルボンドグラフ(NBgE)を提案する。
論文 参考訳(メタデータ) (2024-05-22T12:30:25Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Equivariant Matrix Function Neural Networks [1.8717045355288808]
解析行列同変関数を通じて非局所的相互作用をパラメータ化する新しいアーキテクチャであるマトリックス関数ニューラルネットワーク(MFNs)を導入する。
MFNは量子系の複雑な非局所的な相互作用を捉えることができ、新しい最先端の力場への道を歩むことができる。
論文 参考訳(メタデータ) (2023-10-16T14:17:00Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
グラフニューラルネットワーク(GNN)は、物理力学を学習するための一般的なツールとなっている。
物理法則は、モデル一般化に必須な帰納バイアスである対称性に従属する。
本モデルは,RigidFall上でのPhysylonと2倍低ロールアウトMSEの8つのシナリオにおいて,平均3%以上の接触予測精度の向上を実現している。
論文 参考訳(メタデータ) (2022-10-13T10:00:30Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Learning Mesh-Based Simulation with Graph Networks [20.29893312074383]
グラフニューラルネットワークを用いたメッシュベースのシミュレーション学習フレームワークであるMeshGraphNetsを紹介する。
その結果, 空気力学, 構造力学, 布など, 幅広い物理系の力学を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2020-10-07T13:34:49Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。