論文の概要: Simultaneously optimizing symmetry shifts and tensor factorizations for cost-efficient Fault-Tolerant Quantum Simulations of electronic Hamiltonians
- arxiv url: http://arxiv.org/abs/2412.01338v1
- Date: Mon, 02 Dec 2024 10:02:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:42:09.991269
- Title: Simultaneously optimizing symmetry shifts and tensor factorizations for cost-efficient Fault-Tolerant Quantum Simulations of electronic Hamiltonians
- Title(参考訳): 電子ハミルトニアンの低コストフォールトトレラント量子シミュレーションのための対称性シフトとテンソル分解の同時最適化
- Authors: Konrad Deka, Emil Zak,
- Abstract要約: フォールトトレラント量子コンピューティングにおいて、ハミルトニアン固有値を計算するコストは、ユニタリ回路で符号化されたハミルトニアン行列の一定のスケーリングに比例する。
電子ハミルトニアンのこのスケーリング定数をユニタリの線形結合として表現する手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In fault-tolerant quantum computing, the cost of calculating Hamiltonian eigenvalues using the quantum phase estimation algorithm is proportional to the constant scaling the Hamiltonian matrix block-encoded in a unitary circuit. We present a method to reduce this scaling constant for the electronic Hamiltonians represented as a linear combination of unitaries. Our approach combines the double tensor-factorization method of Burg et al. with the the block-invariant symmetry shift method of Loaiza and Izmaylov. By extending the electronic Hamiltonian with appropriately parametrized symmetry operators and optimizing the tensor-factorization parameters, our method achieves a 25% reduction in the block-encoding scaling constant compared to previous techniques. The resulting savings in the number of non-Clifford T-gates, which are an essential resource for fault-tolerant quantum computation, are expected to accelerate the feasiblity of practical Hamiltonian simulations. We demonstrate the effectiveness of our technique on Hamiltonians of industrial and biological relevance, including the nitrogenase cofactor (FeMoCo) and cytochrome P450.
- Abstract(参考訳): フォールトトレラント量子コンピューティングでは、量子位相推定アルゴリズムを用いてハミルトン固有値を計算するコストは、ユニタリ回路で符号化されたハミルトン行列の定数スケーリングに比例する。
電子ハミルトニアンのこのスケーリング定数をユニタリの線形結合として表現する手法を提案する。
我々のアプローチは、Burg et al の二重テンソル分解法と Loaiza と Izmaylov のブロック不変対称性シフト法を組み合わせる。
電子ハミルトニアンを適切なパラメータ化対称性演算子で拡張し、テンソル分解パラメータを最適化することにより、従来の手法と比較してブロックエンコーディングスケーリング定数を25%削減する。
その結果、フォールトトレラント量子計算に不可欠な非クリフォードTゲートの数が削減され、実践的なハミルトンシミュレーションが実現可能であることが期待されている。
ニトロゲナーゼコファクター (FeMoCo) やシトクロムP450 など, 工業的および生物学的関係のハミルトニアンに対する本法の有効性を実証した。
関連論文リスト
- Assessing the query complexity limits of quantum phase estimation using symmetry aware spectral bounds [0.0]
物理と化学のための量子アルゴリズムの計算コストは、ハミルトンのスペクトルと密接に関連している。
量子位相推定アルゴリズムの性能を統一的に理解するための対称性を考慮したスペクトル境界の階層を導入する。
論文 参考訳(メタデータ) (2024-03-07T18:38:49Z) - Reducing the runtime of fault-tolerant quantum simulations in chemistry
through symmetry-compressed double factorization [0.0]
そこで本研究では,ハミルトニアンの圧縮二重因数分解と対称性シフト技術を組み合わせた対称性圧縮二重因数分解(SCDF)手法を導入し,その1-ノルム値を大幅に低減する。
ここで考慮された系について、SCDFはトフォリゲート数(英語版)を2倍分解あるいはテンソルハイパーコントラクションの他の変種と比較して小さくする。
論文 参考訳(メタデータ) (2024-03-06T07:11:02Z) - Molecular Symmetry in VQE: A Dual Approach for Trapped-Ion Simulations
of Benzene [0.2624902795082451]
変分量子固有解法(VQE)アルゴリズムと適切なアンサッツの併用による短期戦略のヒンジ。
我々は、複雑な化学シミュレーションの実現可能性を高めるために、トラップイオン量子デバイスに適したいくつかの回路最適化手法を用いる。
これらの手法はベンゼン分子シミュレーションに適用され、69個の2量子エンタングリング演算を持つ8量子回路の構築を可能にした。
論文 参考訳(メタデータ) (2023-08-01T17:03:10Z) - Quantum simulations of Fermionic Hamiltonians with efficient encoding
and ansatz schemes [0.688204255655161]
量子コンピュータ上でのフェルミオンハミルトニアンの量子シミュレーションのための計算プロトコルを提案する。
我々は、量子ビット効率のよい符号化方式Slater行列式を量子ビットにマッピングし、修正された量子ビット結合クラスタアンサッツとノイズ緩和技術を組み合わせる。
論文 参考訳(メタデータ) (2022-12-04T20:13:25Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
量子ニューラルネットワーク(QNN)は、現代の量子マシンの力を発揮する。
ハンドクラフト対称アンサーゼを持つQNNは、一般に非対称アンサーゼを持つものよりも訓練性が高い。
本稿では,QNNのグローバル最適収束を定量化するために,実効量子ニューラルネットワークカーネル(EQNTK)を提案する。
論文 参考訳(メタデータ) (2022-08-30T08:17:55Z) - Efficient Quantum Analytic Nuclear Gradients with Double Factorization [0.0]
ラグランジアンに基づく緩和された1粒子および2粒子還元密度行列の評価手法について報告する。
古典的にシミュレーションされた例において、すべての対角線外密度行列要素を復元するためのラグランジュ的アプローチの精度と実現可能性を示す。
論文 参考訳(メタデータ) (2022-07-26T18:47:48Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
短期量子コンピュータは、小さな分子の基底状態特性を計算することができる。
計算アンサッツの構造と装置ノイズによる誤差が計算にどのように影響するかを示す。
論文 参考訳(メタデータ) (2021-12-31T16:33:10Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
変分アダバティックゲージ変換(VAGT)を導入する。
VAGTは、現在の量子コンピュータを用いてユニタリ回路の変動パラメータを学習できる非摂動型ハイブリッド量子アルゴリズムである。
VAGTの精度は、RigettiおよびIonQ量子コンピュータ上でのシミュレーションと同様に、トラフ数値シミュレーションで検証される。
論文 参考訳(メタデータ) (2021-11-16T20:50:08Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
本研究では,異なるシミュレーション手法をハイブリダイズし,インタラクション・ピクチャー・シミュレーションの性能を向上させるフレームワークを提案する。
これらのハイブリッド化手法の物理的応用は、電気遮断において$log2 Lambda$としてゲート複雑性のスケーリングをもたらす。
力学的な制約を受けるハミルトニアンシミュレーションの一般的な問題に対して、これらの手法は、エネルギーコストを課すために使われるペナルティパラメータ$lambda$とは無関係に、クエリの複雑さをもたらす。
論文 参考訳(メタデータ) (2021-09-07T20:01:22Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
本稿では、分子の全電子エネルギーと古典的コンピュータ上の特性を計算できる新しいハイブリッド古典的アルゴリズムを提案する。
本稿では,現在利用可能な量子コンピュータ上で,化学的に関連性のある結果と精度を実現する量子古典ハイブリッドアルゴリズムの能力を実証する。
論文 参考訳(メタデータ) (2021-06-22T18:00:00Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。