論文の概要: ULSR-GS: Ultra Large-scale Surface Reconstruction Gaussian Splatting with Multi-View Geometric Consistency
- arxiv url: http://arxiv.org/abs/2412.01402v1
- Date: Mon, 02 Dec 2024 11:42:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:45:11.395478
- Title: ULSR-GS: Ultra Large-scale Surface Reconstruction Gaussian Splatting with Multi-View Geometric Consistency
- Title(参考訳): ULSR-GS:多視点幾何整合性を有する超大規模表面再構成ガウススプラッティング
- Authors: Zhuoxiao Li, Shanliang Yao, Qizhong Gao, Angel F. Garcia-Fernandez, Yong Yue, Xiaohui Zhu,
- Abstract要約: 超大規模シーンにおける高忠実表面抽出のためのフレームワークであるULSR-GSを提案する。
具体的には、多視点最適ビューマッチング原理と相まって、ポイント・ツー・フォト・パーティショニング手法を提案する。
訓練中、ULSR-GSは表面抽出の詳細を強化するために、多視点の幾何整合性に基づく密度化戦略を採用している。
- 参考スコア(独自算出の注目度): 2.183054716058417
- License:
- Abstract: While Gaussian Splatting (GS) demonstrates efficient and high-quality scene rendering and small area surface extraction ability, it falls short in handling large-scale aerial image surface extraction tasks. To overcome this, we present ULSR-GS, a framework dedicated to high-fidelity surface extraction in ultra-large-scale scenes, addressing the limitations of existing GS-based mesh extraction methods. Specifically, we propose a point-to-photo partitioning approach combined with a multi-view optimal view matching principle to select the best training images for each sub-region. Additionally, during training, ULSR-GS employs a densification strategy based on multi-view geometric consistency to enhance surface extraction details. Experimental results demonstrate that ULSR-GS outperforms other state-of-the-art GS-based works on large-scale aerial photogrammetry benchmark datasets, significantly improving surface extraction accuracy in complex urban environments. Project page: https://ulsrgs.github.io.
- Abstract(参考訳): Gaussian Splatting (GS)は、効率よく高品質なシーンレンダリングと小さな領域表面抽出能力を示すが、大規模な空中画像抽出作業では不十分である。
これを解決するために,超大規模シーンにおける高忠実表面抽出のためのフレームワークであるULSR-GSを提案し,既存のGSベースのメッシュ抽出手法の限界に対処する。
具体的には、各サブリージョンに最適なトレーニング画像を選択するために、複数ビューの最適ビューマッチング原理と組み合わせて、ポイント・ツー・フォト分割方式を提案する。
さらに、ULSR-GSは、表面抽出の詳細を強化するために、多視点幾何学的整合性に基づく密度化戦略を採用している。
実験結果から, ULSR-GSは, 大規模航空写真分析のベンチマークデータセットにおいて, 他の最先端のGSベースワークよりも優れており, 複雑な都市環境における表面抽出精度が著しく向上していることがわかった。
プロジェクトページ: https://ulsrgs.github.io
関連論文リスト
- SuperGS: Super-Resolution 3D Gaussian Splatting via Latent Feature Field and Gradient-guided Splitting [3.5757604402398697]
SuperResolution 3DGS (SuperGS) は、2段階の粗大なトレーニングフレームワークで設計された3DGSの拡張である。
SuperGSは、低解像度入力のみを使用して現実世界のデータセットに挑戦する最先端のHRNVSメソッドを超越している。
論文 参考訳(メタデータ) (2024-10-03T15:18:28Z) - GigaGS: Scaling up Planar-Based 3D Gaussians for Large Scene Surface Reconstruction [71.08607897266045]
3D Gaussian Splatting (3DGS) は新規なビュー合成において有望な性能を示した。
本研究は,大規模な景観表面再構築の課題に取り組むための最初の試みである。
3DGSを用いた大規模シーンのための高品質な表面再構成手法であるGigaGSを提案する。
論文 参考訳(メタデータ) (2024-09-10T17:51:39Z) - 3D Gaussian Splatting for Large-scale Surface Reconstruction from Aerial Images [6.076999957937232]
AGS(Aerial Gaussian Splatting)という,空中多視点ステレオ(MVS)画像を用いた3DGSによる大規模表面再構成手法を提案する。
まず,大規模空中画像に適したデータチャンキング手法を提案する。
次に,レイ・ガウス断面積法を3DGSに統合し,深度情報と正規情報を得る。
論文 参考訳(メタデータ) (2024-08-31T08:17:24Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
本研究では,シーンの形状を暗黙的に符号化する構造認識型ガウス散乱法(SAGS)を提案する。
SAGSは、最先端のレンダリング性能と、ベンチマークノベルビュー合成データセットのストレージ要件の削減を反映している。
論文 参考訳(メタデータ) (2024-04-29T23:26:30Z) - FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting [58.41056963451056]
本稿では,3次元ガウススプラッティングに基づく数ショットビュー合成フレームワークを提案する。
このフレームワークは3つのトレーニングビューでリアルタイムおよびフォトリアリスティックなビュー合成を可能にする。
FSGSは、さまざまなデータセットの精度とレンダリング効率の両方で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-12-01T09:30:02Z) - Deep Posterior Distribution-based Embedding for Hyperspectral Image
Super-resolution [75.24345439401166]
本稿では,高スペクトル画像の高次元空間スペクトル情報を効率的に効率的に埋め込む方法について述べる。
我々は,HS埋め込みを,慎重に定義されたHS埋め込みイベントの集合の後方分布の近似として定式化する。
そして,提案手法を物理的に解釈可能なソース一貫性超解像フレームワークに組み込む。
3つの一般的なベンチマークデータセットに対する実験により、PDE-Netは最先端の手法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2022-05-30T06:59:01Z) - Hyperspectral Image Segmentation based on Graph Processing over
Multilayer Networks [51.15952040322895]
ハイパースペクトル画像(HSI)処理の1つの重要な課題は、スペクトル空間的特徴の抽出である。
M-GSP特徴抽出に基づくHSIセグメンテーションへのいくつかのアプローチを提案する。
HSI処理とスペクトル空間情報抽出におけるM-GSPの強度を実験的に検証した。
論文 参考訳(メタデータ) (2021-11-29T23:28:18Z) - Hyperspectral Image Super-resolution via Deep Spatio-spectral
Convolutional Neural Networks [32.10057746890683]
本稿では,高分解能ハイパースペクトル像と高分解能マルチスペクトル像を融合させる,深部畳み込みニューラルネットワークの簡易かつ効率的なアーキテクチャを提案する。
提案したネットワークアーキテクチャは,近年の最先端ハイパースペクトル画像の超解像化手法と比較して,最高の性能を達成している。
論文 参考訳(メタデータ) (2020-05-29T05:56:50Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
本稿では,最先端の残差学習をベースとした単一グレー/RGB画像の超解像化手法について検討する。
本稿では,空間情報とハイパースペクトルデータのスペクトル間の相関をフル活用するための空間スペクトル先行ネットワーク(SSPN)を提案する。
実験結果から,SSPSR法により高分解能高分解能高分解能画像の詳細が得られた。
論文 参考訳(メタデータ) (2020-05-18T14:25:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。