論文の概要: MBA-RAG: a Bandit Approach for Adaptive Retrieval-Augmented Generation through Question Complexity
- arxiv url: http://arxiv.org/abs/2412.01572v2
- Date: Tue, 03 Dec 2024 06:58:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:46:25.457507
- Title: MBA-RAG: a Bandit Approach for Adaptive Retrieval-Augmented Generation through Question Complexity
- Title(参考訳): MBA-RAG:質問複雑度による適応検索拡張生成のためのバンドアプローチ
- Authors: Xiaqiang Tang, Qiang Gao, Jian Li, Nan Du, Qi Li, Sihong Xie,
- Abstract要約: 本稿では,クエリの複雑性に基づいて最適な検索戦略を動的に選択する強化学習ベースのフレームワークを提案する。
提案手法は,検索コストを低減しつつ,複数のシングルホップおよびマルチホップデータセット上でのアート結果の新たな状態を実現する。
- 参考スコア(独自算出の注目度): 30.346398341996476
- License:
- Abstract: Retrieval Augmented Generation (RAG) has proven to be highly effective in boosting the generative performance of language model in knowledge-intensive tasks. However, existing RAG framework either indiscriminately perform retrieval or rely on rigid single-class classifiers to select retrieval methods, leading to inefficiencies and suboptimal performance across queries of varying complexity. To address these challenges, we propose a reinforcement learning-based framework that dynamically selects the most suitable retrieval strategy based on query complexity. % our solution Our approach leverages a multi-armed bandit algorithm, which treats each retrieval method as a distinct ``arm'' and adapts the selection process by balancing exploration and exploitation. Additionally, we introduce a dynamic reward function that balances accuracy and efficiency, penalizing methods that require more retrieval steps, even if they lead to a correct result. Our method achieves new state of the art results on multiple single-hop and multi-hop datasets while reducing retrieval costs. Our code are available at https://github.com/FUTUREEEEEE/MBA .
- Abstract(参考訳): Retrieval Augmented Generation (RAG) は、知識集約タスクにおける言語モデルの生成性能を高めるのに非常に有効であることが証明されている。
しかしながら、既存のRAGフレームワークは、検索を無差別に行うか、厳格な単一クラス分類器を頼りに検索方法を選択し、複雑さの異なるクエリをまたいだ非効率性とサブ最適性能をもたらす。
これらの課題に対処するために,クエリの複雑さに基づいて最適な検索戦略を動的に選択する強化学習ベースのフレームワークを提案する。
このアルゴリズムは,各検索手法を 'arm'' として扱い,探索と利用のバランスをとることで選択プロセスに適応する。
さらに, 精度と効率のバランスをとる動的報酬関数を導入し, 正しい結果に導いたとしても, より多くの検索ステップを必要とするペナルティ化手法を提案する。
提案手法は,検索コストを低減しつつ,複数のシングルホップおよびマルチホップデータセットに対して,新たな最先端結果を実現する。
私たちのコードはhttps://github.com/FUTUREEEE/MBA で利用可能です。
関連論文リスト
- Learning to Rank for Multiple Retrieval-Augmented Models through Iterative Utility Maximization [21.115495457454365]
本稿では,複数検索拡張世代(RAG)エージェントを対象とした統合検索エンジンの設計について検討する。
本稿では,これらのRAGエージェントの検索結果を検索エンジンが生成し,オフラインで検索した文書の品質に関するフィードバックを収集する反復的手法を提案する。
我々は、このアプローチをオンライン環境に適応させ、リアルタイムな個別エージェントのフィードバックに基づいて、検索エンジンがその振る舞いを洗練できるようにする。
論文 参考訳(メタデータ) (2024-10-13T17:53:50Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
このフレームワークはMonte Carlo Tree Search (MCTS)と反復的なSelf-Refineを組み合わせて推論パスを最適化する。
このフレームワークは、一般的なベンチマークと高度なベンチマークでテストされており、探索効率と問題解決能力の点で優れた性能を示している。
論文 参考訳(メタデータ) (2024-10-03T18:12:29Z) - GenCRF: Generative Clustering and Reformulation Framework for Enhanced Intent-Driven Information Retrieval [20.807374287510623]
我々は,多種多様な意図を適応的に捉えるための生成クラスタリング・改革フレームワークGenCRFを提案する。
我々はGenCRFが,nDCG@10で従来のクエリ修正SOTAを最大12%上回り,最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2024-09-17T05:59:32Z) - EfficientRAG: Efficient Retriever for Multi-Hop Question Answering [52.64500643247252]
マルチホップ質問応答のための効率的な検索器であるEfficientRAGを紹介する。
実験の結果、EfficientRAGは3つのオープンドメインのマルチホップ質問応答データセット上で既存のRAG手法を超越していることがわかった。
論文 参考訳(メタデータ) (2024-08-08T06:57:49Z) - Retrieval with Learned Similarities [2.729516456192901]
最先端の検索アルゴリズムは、学習された類似点に移行した。
そこで本研究では,Mixture-of-Logits (MoL) を実証的に実現し,多様な検索シナリオにおいて優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2024-07-22T08:19:34Z) - Learning to Retrieve Iteratively for In-Context Learning [56.40100968649039]
イテレーティブ検索は、ポリシー最適化によるイテレーティブな意思決定を可能にする、新しいフレームワークである。
テキスト内学習例を構成するための反復型検索器をインスタンス化し,様々な意味解析タスクに適用する。
ステートエンコーディングのためのパラメータを4M追加するだけで、オフザシェルフの高密度レトリバーをステートフル反復レトリバーに変換する。
論文 参考訳(メタデータ) (2024-06-20T21:07:55Z) - Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
本稿では,各データインスタンスのリソースを動的に割り当てることで,推論を高速化するスイッチブルな決定を提案する。
提案手法は, 同一の精度を維持しながら, 推論時のコスト低減に有効である。
論文 参考訳(メタデータ) (2024-05-07T17:44:54Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z) - AugTriever: Unsupervised Dense Retrieval and Domain Adaptation by Scalable Data Augmentation [44.93777271276723]
擬似クエリドキュメントペアを作成することにより,アノテーションフリーでスケーラブルなトレーニングを可能にする2つのアプローチを提案する。
クエリ抽出方法は、元のドキュメントから有能なスパンを選択して擬似クエリを生成する。
転送クエリ生成方法は、要約などの他のNLPタスクのために訓練された生成モデルを使用して、擬似クエリを生成する。
論文 参考訳(メタデータ) (2022-12-17T10:43:25Z) - Sample-Efficient, Exploration-Based Policy Optimisation for Routing
Problems [2.6782615615913348]
本稿では,エントロピーに基づく新しい強化学習手法を提案する。
さらに、我々は、期待したリターンを最大化する、政治以外の強化学習手法を設計する。
我々のモデルは様々な経路問題に一般化可能であることを示す。
論文 参考訳(メタデータ) (2022-05-31T09:51:48Z) - Reinforcement Learning for Branch-and-Bound Optimisation using
Retrospective Trajectories [72.15369769265398]
機械学習は分岐のための有望なパラダイムとして登場した。
分岐のための単純かつ効果的なRLアプローチであるレトロ分岐を提案する。
我々は現在最先端のRL分岐アルゴリズムを3~5倍に上回り、500の制約と1000の変数を持つMILP上での最高のILメソッドの性能の20%以内である。
論文 参考訳(メタデータ) (2022-05-28T06:08:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。