論文の概要: Recovering implicit physics model under real-world constraints
- arxiv url: http://arxiv.org/abs/2412.02215v1
- Date: Tue, 03 Dec 2024 07:11:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:48:50.063380
- Title: Recovering implicit physics model under real-world constraints
- Title(参考訳): 実世界の制約下での暗黙の物理モデル回復
- Authors: Ayan Banerjee, Sandeep K. S. Gupta,
- Abstract要約: 実世界のデータから物理力学の基盤モデルを復元するために,新しい液相定数ニューラルネットワーク(LTC-NN)アーキテクチャを提案する。
LTC-NNアーキテクチャは、最先端スパースモデル回復アプローチよりも暗黙の物理モデル係数を復元する上でより正確である。
- 参考スコア(独自算出の注目度): 6.2178318166123185
- License:
- Abstract: Recovering a physics-driven model, i.e. a governing set of equations of the underlying dynamical systems, from the real-world data has been of recent interest. Most existing methods either operate on simulation data with unrealistically high sampling rates or require explicit measurements of all system variables, which is not amenable in real-world deployments. Moreover, they assume the timestamps of external perturbations to the physical system are known a priori, without uncertainty, implicitly discounting any sensor time-synchronization or human reporting errors. In this paper, we propose a novel liquid time constant neural network (LTC-NN) based architecture to recover underlying model of physical dynamics from real-world data. The automatic differentiation property of LTC-NN nodes overcomes problems associated with low sampling rates, the input dependent time constant in the forward pass of the hidden layer of LTC-NN nodes creates a massive search space of implicit physical dynamics, the physics model solver based data reconstruction loss guides the search for the correct set of implicit dynamics, and the use of the dropout regularization in the dense layer ensures extraction of the sparsest model. Further, to account for the perturbation timing error, we utilize dense layer nodes to search through input shifts that results in the lowest reconstruction loss. Experiments on four benchmark dynamical systems, three with simulation data and one with the real-world data show that the LTC-NN architecture is more accurate in recovering implicit physics model coefficients than the state-of-the-art sparse model recovery approaches. We also introduce four additional case studies (total eight) on real-life medical examples in simulation and with real-world clinical data to show effectiveness of our approach in recovering underlying model in practice.
- Abstract(参考訳): 物理駆動モデル、すなわち、現実のデータから基礎となる力学系の方程式の制御セットを復元することは、近年の関心事である。
既存のほとんどのメソッドは、非現実的に高いサンプリングレートでシミュレーションデータを操作するか、実際のデプロイでは不可能な全てのシステム変数を明示的に測定する必要がある。
さらに、物理的システムに対する外部の摂動のタイムスタンプは、不確実性なく、センサの時間同期や人間の報告エラーを暗黙的に取り除く先例であると仮定する。
本稿では,実世界のデータから物理力学の基盤モデルを取り戻すために,LTC-NNに基づく新しいアーキテクチャを提案する。
LTC-NNノードの自動微分特性は、サンプリングレートの低下に関連する問題を克服し、LCC-NNノードの隠蔽層の前方通過における入力依存時間定数は、暗黙の物理力学の巨大な探索空間を生成し、物理モデルソルバに基づくデータ再構成損失は、暗黙の力学の正しい集合の探索を誘導し、密な層におけるドロップアウト正規化の使用は、疎密なモデルの抽出を保証する。
さらに、摂動タイミング誤差を考慮し、高密度層ノードを用いて入力シフトを探索し、最小の復元損失をもたらす。
シミュレーションデータと実世界のデータを用いた4つのベンチマーク力学系の実験により、LCC-NNアーキテクチャは最先端のスパースモデル回復手法よりも暗黙の物理モデル係数の復元に精度が高いことが示された。
また,シミュレーションにおける実生活医療事例と実生活臨床データに関する4つのケーススタディ(過去8回)を導入し,本手法の有効性を実証した。
関連論文リスト
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
複素・非線形・雑音に隠れた潜在低次元構造を持つ高次元データセットをモデル化する課題に取り組む。
我々のアプローチは、非パラメトリック回帰、因子モデル、高次元回帰のためのニューラルネットワークの概念のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-02-16T23:13:55Z) - Sparse identification of nonlinear dynamics and Koopman operators with Shallow Recurrent Decoder Networks [3.1484174280822845]
本稿では,SINDy-SHRED(SINDy-SHRED)とSINDY-SHRED(SINDy-SHRED)を併用したダイナミクスの同定について述べる。
SINDy-SHRED は Gated Recurrent Units (GRU) を用いて、センサー計測の時間的シーケンスを浅層デコーダネットワークと共にモデル化し、潜在状態空間から全フィールドを再構築する。
我々は, 合成PDEデータ, 海面温度の実環境センサ計測, 直接ビデオデータを含む系統的研究を行った。
論文 参考訳(メタデータ) (2025-01-23T02:18:13Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML法は、非線形構造の地震応答をモデル化するために、科学的原理と物理法則をディープニューラルネットワークに統合する。
運動方程式を操作することは、システムの非線形性を学習し、物理的に解釈可能な結果の中で解を閉じ込めるのに役立つ。
結果、既存の物理誘導LSTMモデルよりも複雑なデータを処理し、他の非物理データ駆動ネットワークより優れている。
論文 参考訳(メタデータ) (2024-02-28T02:16:03Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
本研究では,高次元経験データから力学系を学習する手法を提案する。
我々は、システムの複数の異なるインスタンスからデータが利用できる設定に焦点を当てる。
我々は、単純な理論的分析と、合成および実世界のデータセットに関する広範な実験を通して行動を研究する。
論文 参考訳(メタデータ) (2023-06-21T07:52:07Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Discovering Dynamic Patterns from Spatiotemporal Data with Time-Varying
Low-Rank Autoregression [12.923271427789267]
低ランクテンソル因子化により係数がパラメータ化される時間還元ベクトル自己回帰モデルを開発した。
時間的文脈において、複雑な時間変化系の挙動は、提案モデルにおける時間的モードによって明らかにすることができる。
論文 参考訳(メタデータ) (2022-11-28T15:59:52Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Physics-Coupled Spatio-Temporal Active Learning for Dynamical Systems [15.923190628643681]
主な課題の1つは、認識されたデータストリームを生成する根本原因を推測することである。
機械学習ベースの予測モデルの成功は、モデルトレーニングに大量の注釈付きデータを必要とする。
提案するST-PCNNは, 実世界のデータセットと実世界のデータセットの両方において, 極めて少ないインスタンスで最適精度に収束することを示した。
論文 参考訳(メタデータ) (2021-08-11T18:05:55Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
動的モード分解(DMD)はコヒーレントなスキームを抽出する強力なデータ駆動方式である。
本稿では,異なるメッシュトポロジと次元の観測からDMDを抽出する戦略を提案する。
論文 参考訳(メタデータ) (2021-04-28T22:14:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。