論文の概要: A deep neural network approach to solve the Dirac equation
- arxiv url: http://arxiv.org/abs/2412.03090v1
- Date: Wed, 04 Dec 2024 07:38:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:06:25.211274
- Title: A deep neural network approach to solve the Dirac equation
- Title(参考訳): ディープニューラルネットワークによるディラック方程式の解法
- Authors: Chuanxin Wang, Tomoya Naito, Jian Li, Haozhao Liang,
- Abstract要約: ディープニューラルネットワークと教師なし機械学習技術を用いてディラック方程式を解く。
低層励起状態に対しては、異なる性能と利点を持つ2つの方法が提案されている。
この方法の有効性はクーロンポテンシャルとウッズ・サクソンポテンシャルの計算によって検証される。
- 参考スコア(独自算出の注目度): 4.454216126942097
- License:
- Abstract: We extend the method from [Naito, Naito, and Hashimoto, Phys. Rev. Research 5, 033189 (2023)] to solve the Dirac equation not only for the ground state but also for low-lying excited states using a deep neural network and the unsupervised machine learning technique. The variational method fails because of the Dirac sea, which is avoided by introducing the inverse Hamiltonian method. For low-lying excited states, two methods are proposed, which have different performances and advantages. The validity of this method is verified by the calculations with the Coulomb and Woods-Saxon potentials.
- Abstract(参考訳): ディープニューラルネットワークと教師なし機械学習技術を用いて,ダイラック方程式を基底状態だけでなく,低次励起状態に対しても解くため,本手法を[内藤,内藤,橋本,博士5,033189(2023)]から拡張する。
変分法はディラック海のために失敗するが、これは逆ハミルトン法を導入することによって避けられる。
低層励起状態に対しては、異なる性能と利点を持つ2つの方法が提案されている。
この方法の有効性はクーロンポテンシャルとウッズ・サクソンポテンシャルの計算によって検証される。
関連論文リスト
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - A neural network approach for two-body systems with spin and isospin degrees of freedom [4.454216126942097]
本研究では,2体システムの基底状態を計算するための強化された機械学習手法を提案する。
この方法の妥当性は、重陽子の一意な有界状態を計算することによって検証される。
論文 参考訳(メタデータ) (2024-03-25T14:46:49Z) - Deep Learning for Mean Field Games with non-separable Hamiltonians [0.0]
本稿では,高次元平均場ゲーム(MFG)の解法を提案する。
2つのニューラルネットワークを用いて、MFGシステムの未知の解とフォワードバック条件を近似する。
提案手法は,少数のイテレーションでも効率的であり,最大300次元の処理を単一層で行うことができる。
論文 参考訳(メタデータ) (2023-01-07T15:39:48Z) - Zonotope Domains for Lagrangian Neural Network Verification [102.13346781220383]
我々は、ディープニューラルネットワークを多くの2層ニューラルネットワークの検証に分解する。
我々の手法は線形プログラミングとラグランジアンに基づく検証技術の両方により改善された境界を与える。
論文 参考訳(メタデータ) (2022-10-14T19:31:39Z) - Solving Partial Differential Equations with Point Source Based on
Physics-Informed Neural Networks [33.18757454787517]
近年では、偏微分方程式(PDE)の解法としてディープラーニング技術が用いられている。
3つの新しい手法でこの問題に対処するための普遍的な解決策を提案する。
提案手法を3つの代表的PDEを用いて評価し,提案手法が既存の深層学習手法よりも精度,効率,汎用性に優れていたことを示す。
論文 参考訳(メタデータ) (2021-11-02T06:39:54Z) - Neural network quantum state tomography in a two-qubit experiment [52.77024349608834]
機械学習にインスパイアされた変分法は、量子シミュレータのスケーラブルな状態キャラクタリゼーションへの有望な経路を提供する。
本研究では,2ビットの絡み合った状態を生成する実験から得られた測定データに適用することにより,いくつかの手法をベンチマークし比較する。
実験的な不完全性やノイズの存在下では、変動多様体を物理状態に収束させることで、再構成された状態の質が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2020-07-31T17:25:12Z) - Reintroducing Straight-Through Estimators as Principled Methods for
Stochastic Binary Networks [85.94999581306827]
2重みとアクティベーションを持つニューラルネットワークのトレーニングは、勾配の欠如と離散重みよりも最適化が難しいため、難しい問題である。
多くの実験結果が経験的ストレートスルー(ST)アプローチで達成されている。
同時に、ST法はベルヌーイ重みを持つバイナリネットワーク(SBN)モデルにおける推定子として真に導出することができる。
論文 参考訳(メタデータ) (2020-06-11T23:58:18Z) - There and Back Again: Revisiting Backpropagation Saliency Methods [87.40330595283969]
正当性法は,各入力サンプルの重要度マップを作成することによって,モデルの予測を説明する。
このような手法の一般的なクラスは、信号のバックプロパゲートと結果の勾配の分析に基づいている。
本稿では,そのような手法を統一可能な単一のフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-06T17:58:08Z) - Interpolation Technique to Speed Up Gradients Propagation in Neural ODEs [71.26657499537366]
本稿では,ニューラルネットワークモデルにおける勾配の効率的な近似法を提案する。
我々は、分類、密度推定、推論近似タスクにおいて、ニューラルODEをトレーニングするリバースダイナミック手法と比較する。
論文 参考訳(メタデータ) (2020-03-11T13:15:57Z) - Training Binary Neural Networks using the Bayesian Learning Rule [19.01146578435531]
二分重のニューラルネットワークは計算効率が良く、ハードウェアに優しいが、そのトレーニングには離散的な最適化の問題が伴うため、難しい。
本稿では、既存のアプローチを正当化し、拡張するバイナリニューラルネットワークをトレーニングするための原則的アプローチを提案する。
私たちの研究は、既存のアプローチを正当化し拡張するバイナリニューラルネットワークをトレーニングするための原則化されたアプローチを提供します。
論文 参考訳(メタデータ) (2020-02-25T10:20:10Z) - A Derivative-Free Method for Solving Elliptic Partial Differential
Equations with Deep Neural Networks [2.578242050187029]
楕円型偏微分方程式のクラスを解くためのディープニューラルネットワークに基づく手法を提案する。
我々は、PDEの確率的表現の指導の下で訓練されたディープニューラルネットワークを用いて、PDEの解を近似する。
ブラウンのウォーカーがドメインを探索するにつれ、ディープニューラルネットワークは強化学習の形式で反復的に訓練される。
論文 参考訳(メタデータ) (2020-01-17T03:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。